Metamath Proof Explorer


Theorem emcllem3

Description: Lemma for emcl . The function H is the difference between F and G . (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
emcl.3 H=nlog1+1n
Assertion emcllem3 NHN=FNGN

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 emcl.3 H=nlog1+1n
4 peano2nn NN+1
5 4 nnrpd NN+1+
6 nnrp NN+
7 5 6 relogdivd NlogN+1N=logN+1logN
8 nncn NN
9 1cnd N1
10 nnne0 NN0
11 8 9 8 10 divdird NN+1N=NN+1N
12 8 10 dividd NNN=1
13 12 oveq1d NNN+1N=1+1N
14 11 13 eqtr2d N1+1N=N+1N
15 14 fveq2d Nlog1+1N=logN+1N
16 fzfid N1NFin
17 elfznn m1Nm
18 17 adantl Nm1Nm
19 18 nnrecred Nm1N1m
20 16 19 fsumrecl Nm=1N1m
21 20 recnd Nm=1N1m
22 6 relogcld NlogN
23 22 recnd NlogN
24 5 relogcld NlogN+1
25 24 recnd NlogN+1
26 21 23 25 nnncan1d Nm=1N1m-logN-m=1N1mlogN+1=logN+1logN
27 7 15 26 3eqtr4d Nlog1+1N=m=1N1m-logN-m=1N1mlogN+1
28 oveq2 n=N1n=1N
29 28 oveq2d n=N1+1n=1+1N
30 29 fveq2d n=Nlog1+1n=log1+1N
31 fvex log1+1NV
32 30 3 31 fvmpt NHN=log1+1N
33 oveq2 n=N1n=1N
34 33 sumeq1d n=Nm=1n1m=m=1N1m
35 fveq2 n=Nlogn=logN
36 34 35 oveq12d n=Nm=1n1mlogn=m=1N1mlogN
37 ovex m=1N1mlogNV
38 36 1 37 fvmpt NFN=m=1N1mlogN
39 fvoveq1 n=Nlogn+1=logN+1
40 34 39 oveq12d n=Nm=1n1mlogn+1=m=1N1mlogN+1
41 ovex m=1N1mlogN+1V
42 40 2 41 fvmpt NGN=m=1N1mlogN+1
43 38 42 oveq12d NFNGN=m=1N1m-logN-m=1N1mlogN+1
44 27 32 43 3eqtr4d NHN=FNGN