Description: Lemma for emcl . The function H is the difference between F and G . (Contributed by Mario Carneiro, 11-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | emcl.1 | |
|
emcl.2 | |
||
emcl.3 | |
||
Assertion | emcllem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | emcl.1 | |
|
2 | emcl.2 | |
|
3 | emcl.3 | |
|
4 | peano2nn | |
|
5 | 4 | nnrpd | |
6 | nnrp | |
|
7 | 5 6 | relogdivd | |
8 | nncn | |
|
9 | 1cnd | |
|
10 | nnne0 | |
|
11 | 8 9 8 10 | divdird | |
12 | 8 10 | dividd | |
13 | 12 | oveq1d | |
14 | 11 13 | eqtr2d | |
15 | 14 | fveq2d | |
16 | fzfid | |
|
17 | elfznn | |
|
18 | 17 | adantl | |
19 | 18 | nnrecred | |
20 | 16 19 | fsumrecl | |
21 | 20 | recnd | |
22 | 6 | relogcld | |
23 | 22 | recnd | |
24 | 5 | relogcld | |
25 | 24 | recnd | |
26 | 21 23 25 | nnncan1d | |
27 | 7 15 26 | 3eqtr4d | |
28 | oveq2 | |
|
29 | 28 | oveq2d | |
30 | 29 | fveq2d | |
31 | fvex | |
|
32 | 30 3 31 | fvmpt | |
33 | oveq2 | |
|
34 | 33 | sumeq1d | |
35 | fveq2 | |
|
36 | 34 35 | oveq12d | |
37 | ovex | |
|
38 | 36 1 37 | fvmpt | |
39 | fvoveq1 | |
|
40 | 34 39 | oveq12d | |
41 | ovex | |
|
42 | 40 2 41 | fvmpt | |
43 | 38 42 | oveq12d | |
44 | 27 32 43 | 3eqtr4d | |