| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
|
| 2 |
|
emcl.2 |
|
| 3 |
|
emcl.3 |
|
| 4 |
|
peano2nn |
|
| 5 |
4
|
nnrpd |
|
| 6 |
|
nnrp |
|
| 7 |
5 6
|
relogdivd |
|
| 8 |
|
nncn |
|
| 9 |
|
1cnd |
|
| 10 |
|
nnne0 |
|
| 11 |
8 9 8 10
|
divdird |
|
| 12 |
8 10
|
dividd |
|
| 13 |
12
|
oveq1d |
|
| 14 |
11 13
|
eqtr2d |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
fzfid |
|
| 17 |
|
elfznn |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
nnrecred |
|
| 20 |
16 19
|
fsumrecl |
|
| 21 |
20
|
recnd |
|
| 22 |
6
|
relogcld |
|
| 23 |
22
|
recnd |
|
| 24 |
5
|
relogcld |
|
| 25 |
24
|
recnd |
|
| 26 |
21 23 25
|
nnncan1d |
|
| 27 |
7 15 26
|
3eqtr4d |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
fvex |
|
| 32 |
30 3 31
|
fvmpt |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
sumeq1d |
|
| 35 |
|
fveq2 |
|
| 36 |
34 35
|
oveq12d |
|
| 37 |
|
ovex |
|
| 38 |
36 1 37
|
fvmpt |
|
| 39 |
|
fvoveq1 |
|
| 40 |
34 39
|
oveq12d |
|
| 41 |
|
ovex |
|
| 42 |
40 2 41
|
fvmpt |
|
| 43 |
38 42
|
oveq12d |
|
| 44 |
27 32 43
|
3eqtr4d |
|