| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
| 2 |
|
emcl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
| 3 |
|
emcl.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
| 4 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 5 |
4
|
nnrpd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ+ ) |
| 6 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 7 |
5 6
|
relogdivd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) = ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) |
| 8 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 9 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 10 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 11 |
8 9 8 10
|
divdird |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) = ( ( 𝑁 / 𝑁 ) + ( 1 / 𝑁 ) ) ) |
| 12 |
8 10
|
dividd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 𝑁 ) = 1 ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 𝑁 ) + ( 1 / 𝑁 ) ) = ( 1 + ( 1 / 𝑁 ) ) ) |
| 14 |
11 13
|
eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 1 / 𝑁 ) ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) = ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 16 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) |
| 17 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑚 ∈ ℕ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑚 ∈ ℕ ) |
| 19 |
18
|
nnrecred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 20 |
16 19
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 22 |
6
|
relogcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 24 |
5
|
relogcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 26 |
21 23 25
|
nnncan1d |
⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) − ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) = ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) |
| 27 |
7 15 26
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) − ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 / 𝑛 ) = ( 1 / 𝑁 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑁 ) ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) ) |
| 31 |
|
fvex |
⊢ ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) ∈ V |
| 32 |
30 3 31
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 𝑁 ) = ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
| 34 |
33
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( log ‘ 𝑛 ) = ( log ‘ 𝑁 ) ) |
| 36 |
34 35
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 37 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ∈ V |
| 38 |
36 1 37
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 39 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ ( 𝑁 + 1 ) ) ) |
| 40 |
34 39
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 41 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ V |
| 42 |
40 2 41
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐺 ‘ 𝑁 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 43 |
38 42
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 ‘ 𝑁 ) − ( 𝐺 ‘ 𝑁 ) ) = ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) − ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 44 |
27 32 43
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) − ( 𝐺 ‘ 𝑁 ) ) ) |