| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
| 2 |
|
emcl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
| 3 |
|
emcl.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
| 4 |
|
emcl.4 |
⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 7 |
1 2 3 4
|
emcllem6 |
⊢ ( 𝐹 ⇝ γ ∧ 𝐺 ⇝ γ ) |
| 8 |
7
|
simpri |
⊢ 𝐺 ⇝ γ |
| 9 |
8
|
a1i |
⊢ ( ⊤ → 𝐺 ⇝ γ ) |
| 10 |
1 2
|
emcllem1 |
⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |
| 11 |
10
|
simpri |
⊢ 𝐺 : ℕ ⟶ ℝ |
| 12 |
11
|
ffvelcdmi |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 13 |
12
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 14 |
5 6 9 13
|
climrecl |
⊢ ( ⊤ → γ ∈ ℝ ) |
| 15 |
|
1nn |
⊢ 1 ∈ ℕ |
| 16 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
| 17 |
8
|
a1i |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → 𝐺 ⇝ γ ) |
| 18 |
12
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 19 |
1 2
|
emcllem2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
| 20 |
19
|
simprd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 22 |
5 16 17 18 21
|
climub |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 𝑖 ) ≤ γ ) |
| 23 |
22
|
ralrimiva |
⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ≤ γ ) |
| 24 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 1 ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
| 26 |
25
|
sumeq1d |
⊢ ( 𝑛 = 1 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... 1 ) ( 1 / 𝑚 ) ) |
| 27 |
|
1z |
⊢ 1 ∈ ℤ |
| 28 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 29 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 1 / 𝑚 ) = ( 1 / 1 ) ) |
| 30 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 31 |
29 30
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 1 / 𝑚 ) = 1 ) |
| 32 |
31
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℂ ) → Σ 𝑚 ∈ ( 1 ... 1 ) ( 1 / 𝑚 ) = 1 ) |
| 33 |
27 28 32
|
mp2an |
⊢ Σ 𝑚 ∈ ( 1 ... 1 ) ( 1 / 𝑚 ) = 1 |
| 34 |
26 33
|
eqtrdi |
⊢ ( 𝑛 = 1 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = 1 ) |
| 35 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = ( 1 + 1 ) ) |
| 36 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 37 |
35 36
|
eqtr4di |
⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = 2 ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝑛 = 1 → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ 2 ) ) |
| 39 |
34 38
|
oveq12d |
⊢ ( 𝑛 = 1 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( 1 − ( log ‘ 2 ) ) ) |
| 40 |
|
1re |
⊢ 1 ∈ ℝ |
| 41 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 42 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
| 43 |
41 42
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
| 44 |
40 43
|
resubcli |
⊢ ( 1 − ( log ‘ 2 ) ) ∈ ℝ |
| 45 |
44
|
elexi |
⊢ ( 1 − ( log ‘ 2 ) ) ∈ V |
| 46 |
39 2 45
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐺 ‘ 1 ) = ( 1 − ( log ‘ 2 ) ) ) |
| 47 |
15 46
|
ax-mp |
⊢ ( 𝐺 ‘ 1 ) = ( 1 − ( log ‘ 2 ) ) |
| 48 |
24 47
|
eqtrdi |
⊢ ( 𝑖 = 1 → ( 𝐺 ‘ 𝑖 ) = ( 1 − ( log ‘ 2 ) ) ) |
| 49 |
48
|
breq1d |
⊢ ( 𝑖 = 1 → ( ( 𝐺 ‘ 𝑖 ) ≤ γ ↔ ( 1 − ( log ‘ 2 ) ) ≤ γ ) ) |
| 50 |
49
|
rspcva |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ≤ γ ) → ( 1 − ( log ‘ 2 ) ) ≤ γ ) |
| 51 |
15 23 50
|
sylancr |
⊢ ( ⊤ → ( 1 − ( log ‘ 2 ) ) ≤ γ ) |
| 52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 53 |
52
|
negeqd |
⊢ ( 𝑥 = 𝑖 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑖 ) ) |
| 54 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) |
| 55 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑖 ) ∈ V |
| 56 |
53 54 55
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑖 ) = - ( 𝐹 ‘ 𝑖 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑖 ) = - ( 𝐹 ‘ 𝑖 ) ) |
| 58 |
7
|
simpli |
⊢ 𝐹 ⇝ γ |
| 59 |
58
|
a1i |
⊢ ( ⊤ → 𝐹 ⇝ γ ) |
| 60 |
|
0cnd |
⊢ ( ⊤ → 0 ∈ ℂ ) |
| 61 |
|
nnex |
⊢ ℕ ∈ V |
| 62 |
61
|
mptex |
⊢ ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ V |
| 63 |
62
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
| 64 |
10
|
simpli |
⊢ 𝐹 : ℕ ⟶ ℝ |
| 65 |
64
|
ffvelcdmi |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 66 |
65
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 67 |
66
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 68 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 69 |
68
|
negeqd |
⊢ ( 𝑥 = 𝑘 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 70 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑘 ) ∈ V |
| 71 |
69 54 70
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 72 |
71
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 73 |
|
df-neg |
⊢ - ( 𝐹 ‘ 𝑘 ) = ( 0 − ( 𝐹 ‘ 𝑘 ) ) |
| 74 |
72 73
|
eqtrdi |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) = ( 0 − ( 𝐹 ‘ 𝑘 ) ) ) |
| 75 |
5 6 59 60 63 67 74
|
climsubc2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ⇝ ( 0 − γ ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ⇝ ( 0 − γ ) ) |
| 77 |
66
|
renegcld |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 78 |
72 77
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 79 |
78
|
adantlr |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 80 |
19
|
simpld |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 81 |
80
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 82 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 83 |
82
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 84 |
64
|
ffvelcdmi |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 85 |
83 84
|
syl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 86 |
85 66
|
lenegd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ - ( 𝐹 ‘ 𝑘 ) ≤ - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 87 |
81 86
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → - ( 𝐹 ‘ 𝑘 ) ≤ - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 88 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 89 |
88
|
negeqd |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 90 |
|
negex |
⊢ - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ V |
| 91 |
89 54 90
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) = - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 92 |
83 91
|
syl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) = - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 93 |
87 72 92
|
3brtr4d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ≤ ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 94 |
93
|
adantlr |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ≤ ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 95 |
5 16 76 79 94
|
climub |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑖 ) ≤ ( 0 − γ ) ) |
| 96 |
57 95
|
eqbrtrrd |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → - ( 𝐹 ‘ 𝑖 ) ≤ ( 0 − γ ) ) |
| 97 |
|
df-neg |
⊢ - γ = ( 0 − γ ) |
| 98 |
96 97
|
breqtrrdi |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → - ( 𝐹 ‘ 𝑖 ) ≤ - γ ) |
| 99 |
14
|
mptru |
⊢ γ ∈ ℝ |
| 100 |
64
|
ffvelcdmi |
⊢ ( 𝑖 ∈ ℕ → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 101 |
100
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 102 |
|
leneg |
⊢ ( ( γ ∈ ℝ ∧ ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) → ( γ ≤ ( 𝐹 ‘ 𝑖 ) ↔ - ( 𝐹 ‘ 𝑖 ) ≤ - γ ) ) |
| 103 |
99 101 102
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( γ ≤ ( 𝐹 ‘ 𝑖 ) ↔ - ( 𝐹 ‘ 𝑖 ) ≤ - γ ) ) |
| 104 |
98 103
|
mpbird |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → γ ≤ ( 𝐹 ‘ 𝑖 ) ) |
| 105 |
104
|
ralrimiva |
⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ γ ≤ ( 𝐹 ‘ 𝑖 ) ) |
| 106 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 1 ) ) |
| 107 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = ( log ‘ 1 ) ) |
| 108 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 109 |
107 108
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = 0 ) |
| 110 |
34 109
|
oveq12d |
⊢ ( 𝑛 = 1 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = ( 1 − 0 ) ) |
| 111 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 112 |
110 111
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = 1 ) |
| 113 |
40
|
elexi |
⊢ 1 ∈ V |
| 114 |
112 1 113
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = 1 ) |
| 115 |
15 114
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = 1 |
| 116 |
106 115
|
eqtrdi |
⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = 1 ) |
| 117 |
116
|
breq2d |
⊢ ( 𝑖 = 1 → ( γ ≤ ( 𝐹 ‘ 𝑖 ) ↔ γ ≤ 1 ) ) |
| 118 |
117
|
rspcva |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑖 ∈ ℕ γ ≤ ( 𝐹 ‘ 𝑖 ) ) → γ ≤ 1 ) |
| 119 |
15 105 118
|
sylancr |
⊢ ( ⊤ → γ ≤ 1 ) |
| 120 |
44 40
|
elicc2i |
⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ↔ ( γ ∈ ℝ ∧ ( 1 − ( log ‘ 2 ) ) ≤ γ ∧ γ ≤ 1 ) ) |
| 121 |
14 51 119 120
|
syl3anbrc |
⊢ ( ⊤ → γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ) |
| 122 |
|
ffn |
⊢ ( 𝐹 : ℕ ⟶ ℝ → 𝐹 Fn ℕ ) |
| 123 |
64 122
|
mp1i |
⊢ ( ⊤ → 𝐹 Fn ℕ ) |
| 124 |
16 5
|
eleqtrdi |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 125 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑖 ) → 𝑘 ∈ ℕ ) |
| 126 |
125
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑖 ) ) → 𝑘 ∈ ℕ ) |
| 127 |
126 65
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 128 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) → 𝑘 ∈ ℕ ) |
| 129 |
128
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 130 |
129 80
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 131 |
124 127 130
|
monoord2 |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 132 |
131 115
|
breqtrdi |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ≤ 1 ) |
| 133 |
99 40
|
elicc2i |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ↔ ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ ∧ γ ≤ ( 𝐹 ‘ 𝑖 ) ∧ ( 𝐹 ‘ 𝑖 ) ≤ 1 ) ) |
| 134 |
101 104 132 133
|
syl3anbrc |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ) |
| 135 |
134
|
ralrimiva |
⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ) |
| 136 |
|
ffnfv |
⊢ ( 𝐹 : ℕ ⟶ ( γ [,] 1 ) ↔ ( 𝐹 Fn ℕ ∧ ∀ 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ) ) |
| 137 |
123 135 136
|
sylanbrc |
⊢ ( ⊤ → 𝐹 : ℕ ⟶ ( γ [,] 1 ) ) |
| 138 |
|
ffn |
⊢ ( 𝐺 : ℕ ⟶ ℝ → 𝐺 Fn ℕ ) |
| 139 |
11 138
|
mp1i |
⊢ ( ⊤ → 𝐺 Fn ℕ ) |
| 140 |
11
|
ffvelcdmi |
⊢ ( 𝑖 ∈ ℕ → ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 141 |
140
|
adantl |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 142 |
126 12
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑖 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 143 |
129 20
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 144 |
124 142 143
|
monoord |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ 𝑖 ) ) |
| 145 |
47 144
|
eqbrtrrid |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 1 − ( log ‘ 2 ) ) ≤ ( 𝐺 ‘ 𝑖 ) ) |
| 146 |
44 99
|
elicc2i |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ↔ ( ( 𝐺 ‘ 𝑖 ) ∈ ℝ ∧ ( 1 − ( log ‘ 2 ) ) ≤ ( 𝐺 ‘ 𝑖 ) ∧ ( 𝐺 ‘ 𝑖 ) ≤ γ ) ) |
| 147 |
141 145 22 146
|
syl3anbrc |
⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 148 |
147
|
ralrimiva |
⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 149 |
|
ffnfv |
⊢ ( 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ↔ ( 𝐺 Fn ℕ ∧ ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) ) |
| 150 |
139 148 149
|
sylanbrc |
⊢ ( ⊤ → 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 151 |
121 137 150
|
3jca |
⊢ ( ⊤ → ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ 𝐹 : ℕ ⟶ ( γ [,] 1 ) ∧ 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) ) |
| 152 |
151
|
mptru |
⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ 𝐹 : ℕ ⟶ ( γ [,] 1 ) ∧ 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |