| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|- ( ( A e. RR /\ 1 <_ A ) -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
| 2 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
| 3 |
2
|
adantl |
|- ( ( ( A e. RR /\ 1 <_ A ) /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
| 4 |
3
|
nnrecred |
|- ( ( ( A e. RR /\ 1 <_ A ) /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) |
| 5 |
1 4
|
fsumrecl |
|- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) |
| 6 |
|
flge1nn |
|- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. NN ) |
| 7 |
6
|
nnrpd |
|- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. RR+ ) |
| 8 |
7
|
relogcld |
|- ( ( A e. RR /\ 1 <_ A ) -> ( log ` ( |_ ` A ) ) e. RR ) |
| 9 |
|
peano2re |
|- ( ( log ` ( |_ ` A ) ) e. RR -> ( ( log ` ( |_ ` A ) ) + 1 ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ( A e. RR /\ 1 <_ A ) -> ( ( log ` ( |_ ` A ) ) + 1 ) e. RR ) |
| 11 |
|
simpl |
|- ( ( A e. RR /\ 1 <_ A ) -> A e. RR ) |
| 12 |
|
0red |
|- ( ( A e. RR /\ 1 <_ A ) -> 0 e. RR ) |
| 13 |
|
1re |
|- 1 e. RR |
| 14 |
13
|
a1i |
|- ( ( A e. RR /\ 1 <_ A ) -> 1 e. RR ) |
| 15 |
|
0lt1 |
|- 0 < 1 |
| 16 |
15
|
a1i |
|- ( ( A e. RR /\ 1 <_ A ) -> 0 < 1 ) |
| 17 |
|
simpr |
|- ( ( A e. RR /\ 1 <_ A ) -> 1 <_ A ) |
| 18 |
12 14 11 16 17
|
ltletrd |
|- ( ( A e. RR /\ 1 <_ A ) -> 0 < A ) |
| 19 |
11 18
|
elrpd |
|- ( ( A e. RR /\ 1 <_ A ) -> A e. RR+ ) |
| 20 |
19
|
relogcld |
|- ( ( A e. RR /\ 1 <_ A ) -> ( log ` A ) e. RR ) |
| 21 |
|
peano2re |
|- ( ( log ` A ) e. RR -> ( ( log ` A ) + 1 ) e. RR ) |
| 22 |
20 21
|
syl |
|- ( ( A e. RR /\ 1 <_ A ) -> ( ( log ` A ) + 1 ) e. RR ) |
| 23 |
|
harmonicbnd |
|- ( ( |_ ` A ) e. NN -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) ) |
| 24 |
6 23
|
syl |
|- ( ( A e. RR /\ 1 <_ A ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) ) |
| 25 |
|
emre |
|- gamma e. RR |
| 26 |
25 13
|
elicc2i |
|- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) <-> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. RR /\ gamma <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 ) ) |
| 27 |
26
|
simp3bi |
|- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 ) |
| 28 |
24 27
|
syl |
|- ( ( A e. RR /\ 1 <_ A ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 ) |
| 29 |
5 8 14
|
lesubadd2d |
|- ( ( A e. RR /\ 1 <_ A ) -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 <-> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` ( |_ ` A ) ) + 1 ) ) ) |
| 30 |
28 29
|
mpbid |
|- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` ( |_ ` A ) ) + 1 ) ) |
| 31 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
| 32 |
31
|
adantr |
|- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) <_ A ) |
| 33 |
7 19
|
logled |
|- ( ( A e. RR /\ 1 <_ A ) -> ( ( |_ ` A ) <_ A <-> ( log ` ( |_ ` A ) ) <_ ( log ` A ) ) ) |
| 34 |
32 33
|
mpbid |
|- ( ( A e. RR /\ 1 <_ A ) -> ( log ` ( |_ ` A ) ) <_ ( log ` A ) ) |
| 35 |
8 20 14 34
|
leadd1dd |
|- ( ( A e. RR /\ 1 <_ A ) -> ( ( log ` ( |_ ` A ) ) + 1 ) <_ ( ( log ` A ) + 1 ) ) |
| 36 |
5 10 22 30 35
|
letrd |
|- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` A ) + 1 ) ) |