| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntrval.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | 1re |  |-  1 e. RR | 
						
							| 3 |  | elicopnf |  |-  ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) | 
						
							| 5 | 4 | simplbi |  |-  ( x e. ( 1 [,) +oo ) -> x e. RR ) | 
						
							| 6 |  | 0red |  |-  ( x e. ( 1 [,) +oo ) -> 0 e. RR ) | 
						
							| 7 |  | 1red |  |-  ( x e. ( 1 [,) +oo ) -> 1 e. RR ) | 
						
							| 8 |  | 0lt1 |  |-  0 < 1 | 
						
							| 9 | 8 | a1i |  |-  ( x e. ( 1 [,) +oo ) -> 0 < 1 ) | 
						
							| 10 | 4 | simprbi |  |-  ( x e. ( 1 [,) +oo ) -> 1 <_ x ) | 
						
							| 11 | 6 7 5 9 10 | ltletrd |  |-  ( x e. ( 1 [,) +oo ) -> 0 < x ) | 
						
							| 12 | 5 11 | elrpd |  |-  ( x e. ( 1 [,) +oo ) -> x e. RR+ ) | 
						
							| 13 | 12 | ssriv |  |-  ( 1 [,) +oo ) C_ RR+ | 
						
							| 14 | 13 | a1i |  |-  ( T. -> ( 1 [,) +oo ) C_ RR+ ) | 
						
							| 15 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 16 | 14 15 | sstrdi |  |-  ( T. -> ( 1 [,) +oo ) C_ RR ) | 
						
							| 17 | 16 | resmptd |  |-  ( T. -> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 18 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 19 | 5 18 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( psi ` x ) e. RR ) | 
						
							| 20 |  | peano2re |  |-  ( ( psi ` x ) e. RR -> ( ( psi ` x ) + 1 ) e. RR ) | 
						
							| 21 | 19 20 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( ( psi ` x ) + 1 ) e. RR ) | 
						
							| 22 | 12 | rprege0d |  |-  ( x e. ( 1 [,) +oo ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 23 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 25 |  | nn0p1nn |  |-  ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 26 | 24 25 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 27 | 21 26 | nndivred |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. RR ) | 
						
							| 28 | 27 | recnd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. CC ) | 
						
							| 29 |  | ax-1cn |  |-  1 e. CC | 
						
							| 30 |  | subcl |  |-  ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. CC ) | 
						
							| 31 | 28 29 30 | sylancl |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. CC ) | 
						
							| 32 |  | fzfid |  |-  ( x e. RR -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 33 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 34 | 33 | adantl |  |-  ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 35 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 36 | 1 | pntrf |  |-  R : RR+ --> RR | 
						
							| 37 | 36 | ffvelcdmi |  |-  ( n e. RR+ -> ( R ` n ) e. RR ) | 
						
							| 38 | 35 37 | syl |  |-  ( n e. NN -> ( R ` n ) e. RR ) | 
						
							| 39 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 40 |  | nnmulcl |  |-  ( ( n e. NN /\ ( n + 1 ) e. NN ) -> ( n x. ( n + 1 ) ) e. NN ) | 
						
							| 41 | 39 40 | mpdan |  |-  ( n e. NN -> ( n x. ( n + 1 ) ) e. NN ) | 
						
							| 42 | 38 41 | nndivred |  |-  ( n e. NN -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) | 
						
							| 43 | 34 42 | syl |  |-  ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) | 
						
							| 44 | 32 43 | fsumrecl |  |-  ( x e. RR -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) | 
						
							| 45 | 44 | recnd |  |-  ( x e. RR -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. CC ) | 
						
							| 46 | 5 45 | syl |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. CC ) | 
						
							| 47 |  | oveq2 |  |-  ( m = n -> ( 1 / m ) = ( 1 / n ) ) | 
						
							| 48 |  | fvoveq1 |  |-  ( m = n -> ( psi ` ( m - 1 ) ) = ( psi ` ( n - 1 ) ) ) | 
						
							| 49 |  | oveq1 |  |-  ( m = n -> ( m - 1 ) = ( n - 1 ) ) | 
						
							| 50 | 48 49 | oveq12d |  |-  ( m = n -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) | 
						
							| 51 | 47 50 | jca |  |-  ( m = n -> ( ( 1 / m ) = ( 1 / n ) /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) | 
						
							| 52 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) | 
						
							| 53 |  | fvoveq1 |  |-  ( m = ( n + 1 ) -> ( psi ` ( m - 1 ) ) = ( psi ` ( ( n + 1 ) - 1 ) ) ) | 
						
							| 54 |  | oveq1 |  |-  ( m = ( n + 1 ) -> ( m - 1 ) = ( ( n + 1 ) - 1 ) ) | 
						
							| 55 | 53 54 | oveq12d |  |-  ( m = ( n + 1 ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) | 
						
							| 56 | 52 55 | jca |  |-  ( m = ( n + 1 ) -> ( ( 1 / m ) = ( 1 / ( n + 1 ) ) /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) ) | 
						
							| 57 |  | oveq2 |  |-  ( m = 1 -> ( 1 / m ) = ( 1 / 1 ) ) | 
						
							| 58 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 59 | 57 58 | eqtrdi |  |-  ( m = 1 -> ( 1 / m ) = 1 ) | 
						
							| 60 |  | oveq1 |  |-  ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) | 
						
							| 61 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 62 | 60 61 | eqtrdi |  |-  ( m = 1 -> ( m - 1 ) = 0 ) | 
						
							| 63 | 62 | fveq2d |  |-  ( m = 1 -> ( psi ` ( m - 1 ) ) = ( psi ` 0 ) ) | 
						
							| 64 |  | 2pos |  |-  0 < 2 | 
						
							| 65 |  | 0re |  |-  0 e. RR | 
						
							| 66 |  | chpeq0 |  |-  ( 0 e. RR -> ( ( psi ` 0 ) = 0 <-> 0 < 2 ) ) | 
						
							| 67 | 65 66 | ax-mp |  |-  ( ( psi ` 0 ) = 0 <-> 0 < 2 ) | 
						
							| 68 | 64 67 | mpbir |  |-  ( psi ` 0 ) = 0 | 
						
							| 69 | 63 68 | eqtrdi |  |-  ( m = 1 -> ( psi ` ( m - 1 ) ) = 0 ) | 
						
							| 70 | 69 62 | oveq12d |  |-  ( m = 1 -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( 0 - 0 ) ) | 
						
							| 71 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 72 | 70 71 | eqtrdi |  |-  ( m = 1 -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = 0 ) | 
						
							| 73 | 59 72 | jca |  |-  ( m = 1 -> ( ( 1 / m ) = 1 /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = 0 ) ) | 
						
							| 74 |  | oveq2 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( 1 / m ) = ( 1 / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 75 |  | fvoveq1 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( psi ` ( m - 1 ) ) = ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) | 
						
							| 76 |  | oveq1 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( m - 1 ) = ( ( ( |_ ` x ) + 1 ) - 1 ) ) | 
						
							| 77 | 75 76 | oveq12d |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) | 
						
							| 78 | 74 77 | jca |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( ( 1 / m ) = ( 1 / ( ( |_ ` x ) + 1 ) ) /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) | 
						
							| 79 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 80 | 26 79 | eleqtrdi |  |-  ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 81 |  | elfznn |  |-  ( m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) -> m e. NN ) | 
						
							| 82 | 81 | adantl |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) | 
						
							| 83 | 82 | nnrecred |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( 1 / m ) e. RR ) | 
						
							| 84 | 83 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( 1 / m ) e. CC ) | 
						
							| 85 | 82 | nnred |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR ) | 
						
							| 86 |  | peano2rem |  |-  ( m e. RR -> ( m - 1 ) e. RR ) | 
						
							| 87 | 85 86 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( m - 1 ) e. RR ) | 
						
							| 88 |  | chpcl |  |-  ( ( m - 1 ) e. RR -> ( psi ` ( m - 1 ) ) e. RR ) | 
						
							| 89 | 87 88 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( psi ` ( m - 1 ) ) e. RR ) | 
						
							| 90 | 89 87 | resubcld |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) e. RR ) | 
						
							| 91 | 90 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) e. CC ) | 
						
							| 92 | 51 56 73 78 80 84 91 | fsumparts |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = ( ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) ) ) | 
						
							| 93 | 5 | flcld |  |-  ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. ZZ ) | 
						
							| 94 |  | fzval3 |  |-  ( ( |_ ` x ) e. ZZ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 96 | 95 | eqcomd |  |-  ( x e. ( 1 [,) +oo ) -> ( 1 ..^ ( ( |_ ` x ) + 1 ) ) = ( 1 ... ( |_ ` x ) ) ) | 
						
							| 97 | 33 | adantl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 98 | 97 | nncnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 99 |  | pncan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 100 | 98 29 99 | sylancl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 101 | 97 | nnred |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) | 
						
							| 102 | 100 101 | eqeltrd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) e. RR ) | 
						
							| 103 |  | chpcl |  |-  ( ( ( n + 1 ) - 1 ) e. RR -> ( psi ` ( ( n + 1 ) - 1 ) ) e. RR ) | 
						
							| 104 | 102 103 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) e. RR ) | 
						
							| 105 | 104 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) e. CC ) | 
						
							| 106 | 102 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) e. CC ) | 
						
							| 107 |  | peano2rem |  |-  ( n e. RR -> ( n - 1 ) e. RR ) | 
						
							| 108 | 101 107 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) | 
						
							| 109 |  | chpcl |  |-  ( ( n - 1 ) e. RR -> ( psi ` ( n - 1 ) ) e. RR ) | 
						
							| 110 | 108 109 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( n - 1 ) ) e. RR ) | 
						
							| 111 | 110 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( n - 1 ) ) e. CC ) | 
						
							| 112 |  | 1cnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 113 | 98 112 | subcld |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. CC ) | 
						
							| 114 | 105 106 111 113 | sub4d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) = ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) - ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) ) ) | 
						
							| 115 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 116 | 97 115 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 117 | 116 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 118 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 119 | 97 118 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. NN0 ) | 
						
							| 120 |  | chpp1 |  |-  ( ( n - 1 ) e. NN0 -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) ) | 
						
							| 121 | 119 120 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) ) | 
						
							| 122 |  | npcan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 123 | 98 29 122 | sylancl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 124 | 123 100 | eqtr4d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n - 1 ) + 1 ) = ( ( n + 1 ) - 1 ) ) | 
						
							| 125 | 124 | fveq2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( psi ` ( ( n + 1 ) - 1 ) ) ) | 
						
							| 126 | 123 | fveq2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` ( ( n - 1 ) + 1 ) ) = ( Lam ` n ) ) | 
						
							| 127 | 126 | oveq2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` n ) ) ) | 
						
							| 128 | 121 125 127 | 3eqtr3d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` n ) ) ) | 
						
							| 129 | 111 117 128 | mvrladdd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) = ( Lam ` n ) ) | 
						
							| 130 |  | peano2cn |  |-  ( n e. CC -> ( n + 1 ) e. CC ) | 
						
							| 131 | 98 130 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. CC ) | 
						
							| 132 | 131 98 112 | nnncan2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) = ( ( n + 1 ) - n ) ) | 
						
							| 133 |  | pncan2 |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - n ) = 1 ) | 
						
							| 134 | 98 29 133 | sylancl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - n ) = 1 ) | 
						
							| 135 | 132 134 | eqtrd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) = 1 ) | 
						
							| 136 | 129 135 | oveq12d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) - ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) ) = ( ( Lam ` n ) - 1 ) ) | 
						
							| 137 | 114 136 | eqtrd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) = ( ( Lam ` n ) - 1 ) ) | 
						
							| 138 | 137 | oveq2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = ( ( 1 / n ) x. ( ( Lam ` n ) - 1 ) ) ) | 
						
							| 139 |  | peano2rem |  |-  ( ( Lam ` n ) e. RR -> ( ( Lam ` n ) - 1 ) e. RR ) | 
						
							| 140 | 116 139 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) - 1 ) e. RR ) | 
						
							| 141 | 140 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) - 1 ) e. CC ) | 
						
							| 142 | 97 | nnne0d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 143 | 141 98 142 | divrec2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) - 1 ) / n ) = ( ( 1 / n ) x. ( ( Lam ` n ) - 1 ) ) ) | 
						
							| 144 | 138 143 | eqtr4d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = ( ( ( Lam ` n ) - 1 ) / n ) ) | 
						
							| 145 | 96 144 | sumeq12rdv |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) | 
						
							| 146 | 24 | nn0cnd |  |-  ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. CC ) | 
						
							| 147 |  | pncan |  |-  ( ( ( |_ ` x ) e. CC /\ 1 e. CC ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) | 
						
							| 148 | 146 29 147 | sylancl |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) | 
						
							| 149 | 148 | fveq2d |  |-  ( x e. ( 1 [,) +oo ) -> ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( psi ` ( |_ ` x ) ) ) | 
						
							| 150 |  | chpfl |  |-  ( x e. RR -> ( psi ` ( |_ ` x ) ) = ( psi ` x ) ) | 
						
							| 151 | 5 150 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( psi ` ( |_ ` x ) ) = ( psi ` x ) ) | 
						
							| 152 | 149 151 | eqtrd |  |-  ( x e. ( 1 [,) +oo ) -> ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( psi ` x ) ) | 
						
							| 153 | 152 | oveq1d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( ( psi ` x ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) | 
						
							| 154 | 19 | recnd |  |-  ( x e. ( 1 [,) +oo ) -> ( psi ` x ) e. CC ) | 
						
							| 155 | 26 | nncnd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) e. CC ) | 
						
							| 156 |  | 1cnd |  |-  ( x e. ( 1 [,) +oo ) -> 1 e. CC ) | 
						
							| 157 | 154 155 156 | subsub3d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( psi ` x ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 158 | 153 157 | eqtrd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 159 | 158 | oveq2d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 160 | 26 | nnrecred |  |-  ( x e. ( 1 [,) +oo ) -> ( 1 / ( ( |_ ` x ) + 1 ) ) e. RR ) | 
						
							| 161 | 160 | recnd |  |-  ( x e. ( 1 [,) +oo ) -> ( 1 / ( ( |_ ` x ) + 1 ) ) e. CC ) | 
						
							| 162 |  | peano2cn |  |-  ( ( psi ` x ) e. CC -> ( ( psi ` x ) + 1 ) e. CC ) | 
						
							| 163 | 154 162 | syl |  |-  ( x e. ( 1 [,) +oo ) -> ( ( psi ` x ) + 1 ) e. CC ) | 
						
							| 164 | 161 163 155 | subdid |  |-  ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) = ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) - ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 165 | 26 | nnne0d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) =/= 0 ) | 
						
							| 166 | 163 155 165 | divrec2d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) = ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) ) | 
						
							| 167 | 166 | eqcomd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) = ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 168 | 155 165 | recid2d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( |_ ` x ) + 1 ) ) = 1 ) | 
						
							| 169 | 167 168 | oveq12d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) - ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( |_ ` x ) + 1 ) ) ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) | 
						
							| 170 | 159 164 169 | 3eqtrd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) | 
						
							| 171 | 29 | mul01i |  |-  ( 1 x. 0 ) = 0 | 
						
							| 172 | 171 | a1i |  |-  ( x e. ( 1 [,) +oo ) -> ( 1 x. 0 ) = 0 ) | 
						
							| 173 | 170 172 | oveq12d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - 0 ) ) | 
						
							| 174 | 31 | subid1d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - 0 ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) | 
						
							| 175 | 173 174 | eqtrd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) | 
						
							| 176 | 97 41 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( n + 1 ) ) e. NN ) | 
						
							| 177 | 176 | nnrecred |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n x. ( n + 1 ) ) ) e. RR ) | 
						
							| 178 | 177 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n x. ( n + 1 ) ) ) e. CC ) | 
						
							| 179 | 97 38 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` n ) e. RR ) | 
						
							| 180 | 179 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` n ) e. CC ) | 
						
							| 181 | 178 180 | mulneg1d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( -u ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) = -u ( ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) | 
						
							| 182 | 98 112 | mulcld |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. 1 ) e. CC ) | 
						
							| 183 | 98 131 | mulcld |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( n + 1 ) ) e. CC ) | 
						
							| 184 | 176 | nnne0d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( n + 1 ) ) =/= 0 ) | 
						
							| 185 | 131 182 183 184 | divsubdird |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - ( n x. 1 ) ) / ( n x. ( n + 1 ) ) ) = ( ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) - ( ( n x. 1 ) / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 186 | 98 | mulridd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. 1 ) = n ) | 
						
							| 187 | 186 | oveq2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - ( n x. 1 ) ) = ( ( n + 1 ) - n ) ) | 
						
							| 188 | 187 134 | eqtrd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - ( n x. 1 ) ) = 1 ) | 
						
							| 189 | 188 | oveq1d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - ( n x. 1 ) ) / ( n x. ( n + 1 ) ) ) = ( 1 / ( n x. ( n + 1 ) ) ) ) | 
						
							| 190 | 131 | mulridd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) x. 1 ) = ( n + 1 ) ) | 
						
							| 191 | 131 98 | mulcomd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) x. n ) = ( n x. ( n + 1 ) ) ) | 
						
							| 192 | 190 191 | oveq12d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) x. 1 ) / ( ( n + 1 ) x. n ) ) = ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 193 | 97 39 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. NN ) | 
						
							| 194 | 193 | nnne0d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) =/= 0 ) | 
						
							| 195 | 112 98 131 142 194 | divcan5d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) x. 1 ) / ( ( n + 1 ) x. n ) ) = ( 1 / n ) ) | 
						
							| 196 | 192 195 | eqtr3d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) = ( 1 / n ) ) | 
						
							| 197 | 112 131 98 194 142 | divcan5d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n x. 1 ) / ( n x. ( n + 1 ) ) ) = ( 1 / ( n + 1 ) ) ) | 
						
							| 198 | 196 197 | oveq12d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) - ( ( n x. 1 ) / ( n x. ( n + 1 ) ) ) ) = ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) ) | 
						
							| 199 | 185 189 198 | 3eqtr3d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n x. ( n + 1 ) ) ) = ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) ) | 
						
							| 200 | 199 | negeqd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( 1 / ( n x. ( n + 1 ) ) ) = -u ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) ) | 
						
							| 201 | 97 | nnrecred |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 202 | 201 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 203 | 193 | nnrecred |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n + 1 ) ) e. RR ) | 
						
							| 204 | 203 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n + 1 ) ) e. CC ) | 
						
							| 205 | 202 204 | negsubdi2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) = ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) ) | 
						
							| 206 | 200 205 | eqtr2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) = -u ( 1 / ( n x. ( n + 1 ) ) ) ) | 
						
							| 207 | 97 | nnrpd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 208 | 100 207 | eqeltrd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) e. RR+ ) | 
						
							| 209 | 1 | pntrval |  |-  ( ( ( n + 1 ) - 1 ) e. RR+ -> ( R ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) | 
						
							| 210 | 208 209 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) | 
						
							| 211 | 100 | fveq2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( ( n + 1 ) - 1 ) ) = ( R ` n ) ) | 
						
							| 212 | 210 211 | eqtr3d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) = ( R ` n ) ) | 
						
							| 213 | 206 212 | oveq12d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = ( -u ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) | 
						
							| 214 | 180 183 184 | divrec2d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) = ( ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) | 
						
							| 215 | 214 | negeqd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) = -u ( ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) | 
						
							| 216 | 181 213 215 | 3eqtr4d |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 217 | 96 216 | sumeq12rdv |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 218 |  | fzfid |  |-  ( x e. ( 1 [,) +oo ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 219 | 97 42 | syl |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) | 
						
							| 220 | 219 | recnd |  |-  ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. CC ) | 
						
							| 221 | 218 220 | fsumneg |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 222 | 217 221 | eqtrd |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 223 | 175 222 | oveq12d |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 224 | 92 145 223 | 3eqtr3d |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 225 | 31 46 | subnegd |  |-  ( x e. ( 1 [,) +oo ) -> ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 226 | 224 225 | eqtrd |  |-  ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 227 | 31 46 226 | mvrladdd |  |-  ( x e. ( 1 [,) +oo ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 228 | 227 | mpteq2ia |  |-  ( x e. ( 1 [,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 229 |  | fzfid |  |-  ( ( T. /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 230 | 33 | adantl |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 231 | 230 115 | syl |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 232 | 231 139 | syl |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) - 1 ) e. RR ) | 
						
							| 233 | 232 230 | nndivred |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) - 1 ) / n ) e. RR ) | 
						
							| 234 | 229 233 | fsumrecl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) e. RR ) | 
						
							| 235 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 236 | 235 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> x e. RR ) | 
						
							| 237 | 236 18 | syl |  |-  ( ( T. /\ x e. RR+ ) -> ( psi ` x ) e. RR ) | 
						
							| 238 | 237 20 | syl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) + 1 ) e. RR ) | 
						
							| 239 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 240 | 239 23 | syl |  |-  ( x e. RR+ -> ( |_ ` x ) e. NN0 ) | 
						
							| 241 | 240 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 242 | 241 25 | syl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 243 | 238 242 | nndivred |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. RR ) | 
						
							| 244 |  | peano2rem |  |-  ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. RR -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. RR ) | 
						
							| 245 | 243 244 | syl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. RR ) | 
						
							| 246 |  | reex |  |-  RR e. _V | 
						
							| 247 | 246 15 | ssexi |  |-  RR+ e. _V | 
						
							| 248 | 247 | a1i |  |-  ( T. -> RR+ e. _V ) | 
						
							| 249 | 231 230 | nndivred |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 250 | 249 | recnd |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 251 | 229 250 | fsumcl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 252 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 253 | 252 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) | 
						
							| 254 | 253 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) | 
						
							| 255 | 251 254 | subcld |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) | 
						
							| 256 | 230 | nnrecred |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 257 | 229 256 | fsumrecl |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) | 
						
							| 258 | 257 253 | resubcld |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) e. RR ) | 
						
							| 259 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) ) | 
						
							| 260 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) | 
						
							| 261 | 248 255 258 259 260 | offval2 |  |-  ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) ) | 
						
							| 262 | 256 | recnd |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 263 | 229 250 262 | fsumsub |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( 1 / n ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) ) | 
						
							| 264 | 231 | recnd |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 265 |  | 1cnd |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 266 | 230 | nncnd |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 267 | 230 | nnne0d |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 268 | 264 265 266 267 | divsubdird |  |-  ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) - 1 ) / n ) = ( ( ( Lam ` n ) / n ) - ( 1 / n ) ) ) | 
						
							| 269 | 268 | sumeq2dv |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( 1 / n ) ) ) | 
						
							| 270 | 257 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. CC ) | 
						
							| 271 | 251 270 254 | nnncan2d |  |-  ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) ) | 
						
							| 272 | 263 269 271 | 3eqtr4rd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) | 
						
							| 273 | 272 | mpteq2dva |  |-  ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) ) | 
						
							| 274 | 261 273 | eqtrd |  |-  ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) ) | 
						
							| 275 |  | vmadivsum |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) | 
						
							| 276 | 15 | a1i |  |-  ( T. -> RR+ C_ RR ) | 
						
							| 277 | 258 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) e. CC ) | 
						
							| 278 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 279 |  | harmoniclbnd |  |-  ( x e. RR+ -> ( log ` x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) | 
						
							| 280 | 279 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( log ` x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) | 
						
							| 281 | 253 257 280 | abssubge0d |  |-  ( ( T. /\ x e. RR+ ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) | 
						
							| 282 | 281 | adantrr |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) | 
						
							| 283 | 235 | ad2antrl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) | 
						
							| 284 |  | simprr |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) | 
						
							| 285 |  | harmonicubnd |  |-  ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 286 | 283 284 285 | syl2anc |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 287 |  | 1red |  |-  ( ( T. /\ x e. RR+ ) -> 1 e. RR ) | 
						
							| 288 | 257 253 287 | lesubadd2d |  |-  ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) <_ 1 <-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) ) | 
						
							| 289 | 288 | adantrr |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) <_ 1 <-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) ) | 
						
							| 290 | 286 289 | mpbird |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) <_ 1 ) | 
						
							| 291 | 282 290 | eqbrtrd |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) <_ 1 ) | 
						
							| 292 | 276 277 278 278 291 | elo1d |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 293 |  | o1sub |  |-  ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) /\ ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 294 | 275 292 293 | sylancr |  |-  ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 295 | 274 294 | eqeltrrd |  |-  ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) e. O(1) ) | 
						
							| 296 | 243 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. CC ) | 
						
							| 297 |  | 1cnd |  |-  ( ( T. /\ x e. RR+ ) -> 1 e. CC ) | 
						
							| 298 | 237 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> ( psi ` x ) e. CC ) | 
						
							| 299 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 300 | 299 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 301 |  | divdir |  |-  ( ( ( psi ` x ) e. CC /\ 1 e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( psi ` x ) + 1 ) / x ) = ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) | 
						
							| 302 | 298 297 300 301 | syl3anc |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) = ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) | 
						
							| 303 | 302 | mpteq2dva |  |-  ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) + 1 ) / x ) ) = ( x e. RR+ |-> ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) ) | 
						
							| 304 |  | simpr |  |-  ( ( T. /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 305 | 237 304 | rerpdivcld |  |-  ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) | 
						
							| 306 |  | rpreccl |  |-  ( x e. RR+ -> ( 1 / x ) e. RR+ ) | 
						
							| 307 | 306 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) | 
						
							| 308 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) = ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ) | 
						
							| 309 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( 1 / x ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) | 
						
							| 310 | 248 305 307 308 309 | offval2 |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) = ( x e. RR+ |-> ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) ) | 
						
							| 311 |  | chpo1ub |  |-  ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) | 
						
							| 312 |  | divrcnv |  |-  ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) | 
						
							| 313 | 29 312 | ax-mp |  |-  ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 | 
						
							| 314 |  | rlimo1 |  |-  ( ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) | 
						
							| 315 | 313 314 | mp1i |  |-  ( T. -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) | 
						
							| 316 |  | o1add |  |-  ( ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) /\ ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) | 
						
							| 317 | 311 315 316 | sylancr |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) | 
						
							| 318 | 310 317 | eqeltrrd |  |-  ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) e. O(1) ) | 
						
							| 319 | 303 318 | eqeltrd |  |-  ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) + 1 ) / x ) ) e. O(1) ) | 
						
							| 320 | 238 304 | rerpdivcld |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) e. RR ) | 
						
							| 321 |  | chpge0 |  |-  ( x e. RR -> 0 <_ ( psi ` x ) ) | 
						
							| 322 | 236 321 | syl |  |-  ( ( T. /\ x e. RR+ ) -> 0 <_ ( psi ` x ) ) | 
						
							| 323 | 237 322 | ge0p1rpd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) + 1 ) e. RR+ ) | 
						
							| 324 | 323 | rprege0d |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) e. RR /\ 0 <_ ( ( psi ` x ) + 1 ) ) ) | 
						
							| 325 | 242 | nnrpd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. RR+ ) | 
						
							| 326 | 325 | rpregt0d |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( |_ ` x ) + 1 ) e. RR /\ 0 < ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 327 |  | divge0 |  |-  ( ( ( ( ( psi ` x ) + 1 ) e. RR /\ 0 <_ ( ( psi ` x ) + 1 ) ) /\ ( ( ( |_ ` x ) + 1 ) e. RR /\ 0 < ( ( |_ ` x ) + 1 ) ) ) -> 0 <_ ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 328 | 324 326 327 | syl2anc |  |-  ( ( T. /\ x e. RR+ ) -> 0 <_ ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 329 | 243 328 | absidd |  |-  ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) = ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 330 | 320 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) e. CC ) | 
						
							| 331 | 330 | abscld |  |-  ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) e. RR ) | 
						
							| 332 |  | fllep1 |  |-  ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 333 | 236 332 | syl |  |-  ( ( T. /\ x e. RR+ ) -> x <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 334 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 335 | 334 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( x e. RR /\ 0 < x ) ) | 
						
							| 336 | 323 | rpregt0d |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) e. RR /\ 0 < ( ( psi ` x ) + 1 ) ) ) | 
						
							| 337 |  | lediv2 |  |-  ( ( ( x e. RR /\ 0 < x ) /\ ( ( ( |_ ` x ) + 1 ) e. RR /\ 0 < ( ( |_ ` x ) + 1 ) ) /\ ( ( ( psi ` x ) + 1 ) e. RR /\ 0 < ( ( psi ` x ) + 1 ) ) ) -> ( x <_ ( ( |_ ` x ) + 1 ) <-> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( ( ( psi ` x ) + 1 ) / x ) ) ) | 
						
							| 338 | 335 326 336 337 | syl3anc |  |-  ( ( T. /\ x e. RR+ ) -> ( x <_ ( ( |_ ` x ) + 1 ) <-> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( ( ( psi ` x ) + 1 ) / x ) ) ) | 
						
							| 339 | 333 338 | mpbid |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( ( ( psi ` x ) + 1 ) / x ) ) | 
						
							| 340 | 320 | leabsd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) | 
						
							| 341 | 243 320 331 339 340 | letrd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) | 
						
							| 342 | 329 341 | eqbrtrd |  |-  ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) | 
						
							| 343 | 342 | adantrr |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) | 
						
							| 344 | 278 319 320 296 343 | o1le |  |-  ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) e. O(1) ) | 
						
							| 345 |  | o1const |  |-  ( ( RR+ C_ RR /\ 1 e. CC ) -> ( x e. RR+ |-> 1 ) e. O(1) ) | 
						
							| 346 | 15 29 345 | mp2an |  |-  ( x e. RR+ |-> 1 ) e. O(1) | 
						
							| 347 | 346 | a1i |  |-  ( T. -> ( x e. RR+ |-> 1 ) e. O(1) ) | 
						
							| 348 | 296 297 344 347 | o1sub2 |  |-  ( T. -> ( x e. RR+ |-> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) e. O(1) ) | 
						
							| 349 | 234 245 295 348 | o1sub2 |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) ) e. O(1) ) | 
						
							| 350 | 14 349 | o1res2 |  |-  ( T. -> ( x e. ( 1 [,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) ) e. O(1) ) | 
						
							| 351 | 228 350 | eqeltrrid |  |-  ( T. -> ( x e. ( 1 [,) +oo ) |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) ) | 
						
							| 352 | 17 351 | eqeltrd |  |-  ( T. -> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) | 
						
							| 353 |  | eqid |  |-  ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) = ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) | 
						
							| 354 | 353 45 | fmpti |  |-  ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) : RR --> CC | 
						
							| 355 | 354 | a1i |  |-  ( T. -> ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) : RR --> CC ) | 
						
							| 356 |  | ssidd |  |-  ( T. -> RR C_ RR ) | 
						
							| 357 | 355 356 278 | o1resb |  |-  ( T. -> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) <-> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) ) | 
						
							| 358 | 352 357 | mpbird |  |-  ( T. -> ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) ) | 
						
							| 359 | 358 | mptru |  |-  ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) |