| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumparts.b |
|- ( k = j -> ( A = B /\ V = W ) ) |
| 2 |
|
fsumparts.c |
|- ( k = ( j + 1 ) -> ( A = C /\ V = X ) ) |
| 3 |
|
fsumparts.d |
|- ( k = M -> ( A = D /\ V = Y ) ) |
| 4 |
|
fsumparts.e |
|- ( k = N -> ( A = E /\ V = Z ) ) |
| 5 |
|
fsumparts.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 6 |
|
fsumparts.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
| 7 |
|
fsumparts.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> V e. CC ) |
| 8 |
|
sum0 |
|- sum_ j e. (/) ( B x. ( X - W ) ) = 0 |
| 9 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 10 |
8 9
|
eqtr4i |
|- sum_ j e. (/) ( B x. ( X - W ) ) = ( 0 - 0 ) |
| 11 |
|
simpr |
|- ( ( ph /\ N = M ) -> N = M ) |
| 12 |
11
|
oveq2d |
|- ( ( ph /\ N = M ) -> ( M ..^ N ) = ( M ..^ M ) ) |
| 13 |
|
fzo0 |
|- ( M ..^ M ) = (/) |
| 14 |
12 13
|
eqtrdi |
|- ( ( ph /\ N = M ) -> ( M ..^ N ) = (/) ) |
| 15 |
14
|
sumeq1d |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = sum_ j e. (/) ( B x. ( X - W ) ) ) |
| 16 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 17 |
5 16
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 18 |
|
eqtr3 |
|- ( ( k = M /\ N = M ) -> k = N ) |
| 19 |
|
oveq12 |
|- ( ( A = E /\ V = Z ) -> ( A x. V ) = ( E x. Z ) ) |
| 20 |
18 4 19
|
3syl |
|- ( ( k = M /\ N = M ) -> ( A x. V ) = ( E x. Z ) ) |
| 21 |
|
oveq12 |
|- ( ( A = D /\ V = Y ) -> ( A x. V ) = ( D x. Y ) ) |
| 22 |
3 21
|
syl |
|- ( k = M -> ( A x. V ) = ( D x. Y ) ) |
| 23 |
22
|
adantr |
|- ( ( k = M /\ N = M ) -> ( A x. V ) = ( D x. Y ) ) |
| 24 |
20 23
|
eqeq12d |
|- ( ( k = M /\ N = M ) -> ( ( A x. V ) = ( A x. V ) <-> ( E x. Z ) = ( D x. Y ) ) ) |
| 25 |
24
|
pm5.74da |
|- ( k = M -> ( ( N = M -> ( A x. V ) = ( A x. V ) ) <-> ( N = M -> ( E x. Z ) = ( D x. Y ) ) ) ) |
| 26 |
|
eqidd |
|- ( N = M -> ( A x. V ) = ( A x. V ) ) |
| 27 |
25 26
|
vtoclg |
|- ( M e. ( M ... N ) -> ( N = M -> ( E x. Z ) = ( D x. Y ) ) ) |
| 28 |
27
|
imp |
|- ( ( M e. ( M ... N ) /\ N = M ) -> ( E x. Z ) = ( D x. Y ) ) |
| 29 |
17 28
|
sylan |
|- ( ( ph /\ N = M ) -> ( E x. Z ) = ( D x. Y ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ph /\ N = M ) -> ( ( E x. Z ) - ( D x. Y ) ) = ( ( D x. Y ) - ( D x. Y ) ) ) |
| 31 |
3
|
simpld |
|- ( k = M -> A = D ) |
| 32 |
31
|
eleq1d |
|- ( k = M -> ( A e. CC <-> D e. CC ) ) |
| 33 |
6
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 34 |
32 33 17
|
rspcdva |
|- ( ph -> D e. CC ) |
| 35 |
3
|
simprd |
|- ( k = M -> V = Y ) |
| 36 |
35
|
eleq1d |
|- ( k = M -> ( V e. CC <-> Y e. CC ) ) |
| 37 |
7
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) V e. CC ) |
| 38 |
36 37 17
|
rspcdva |
|- ( ph -> Y e. CC ) |
| 39 |
34 38
|
mulcld |
|- ( ph -> ( D x. Y ) e. CC ) |
| 40 |
39
|
subidd |
|- ( ph -> ( ( D x. Y ) - ( D x. Y ) ) = 0 ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ N = M ) -> ( ( D x. Y ) - ( D x. Y ) ) = 0 ) |
| 42 |
30 41
|
eqtrd |
|- ( ( ph /\ N = M ) -> ( ( E x. Z ) - ( D x. Y ) ) = 0 ) |
| 43 |
14
|
sumeq1d |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = sum_ j e. (/) ( ( C - B ) x. X ) ) |
| 44 |
|
sum0 |
|- sum_ j e. (/) ( ( C - B ) x. X ) = 0 |
| 45 |
43 44
|
eqtrdi |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = 0 ) |
| 46 |
42 45
|
oveq12d |
|- ( ( ph /\ N = M ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) = ( 0 - 0 ) ) |
| 47 |
10 15 46
|
3eqtr4a |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
| 48 |
|
fzofi |
|- ( ( M + 1 ) ..^ N ) e. Fin |
| 49 |
48
|
a1i |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) e. Fin ) |
| 50 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 51 |
5 50
|
syl |
|- ( ph -> M e. ZZ ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. ZZ ) |
| 53 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 54 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 55 |
|
fzoss1 |
|- ( ( M + 1 ) e. ( ZZ>= ` M ) -> ( ( M + 1 ) ..^ N ) C_ ( M ..^ N ) ) |
| 56 |
52 53 54 55
|
4syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) C_ ( M ..^ N ) ) |
| 57 |
56
|
sselda |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ..^ N ) ) -> k e. ( M ..^ N ) ) |
| 58 |
|
elfzofz |
|- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
| 59 |
6 7
|
mulcld |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( A x. V ) e. CC ) |
| 60 |
58 59
|
sylan2 |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( A x. V ) e. CC ) |
| 61 |
60
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ..^ N ) ) -> ( A x. V ) e. CC ) |
| 62 |
57 61
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ..^ N ) ) -> ( A x. V ) e. CC ) |
| 63 |
49 62
|
fsumcl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) e. CC ) |
| 64 |
4
|
simpld |
|- ( k = N -> A = E ) |
| 65 |
64
|
eleq1d |
|- ( k = N -> ( A e. CC <-> E e. CC ) ) |
| 66 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 67 |
5 66
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 68 |
65 33 67
|
rspcdva |
|- ( ph -> E e. CC ) |
| 69 |
4
|
simprd |
|- ( k = N -> V = Z ) |
| 70 |
69
|
eleq1d |
|- ( k = N -> ( V e. CC <-> Z e. CC ) ) |
| 71 |
70 37 67
|
rspcdva |
|- ( ph -> Z e. CC ) |
| 72 |
68 71
|
mulcld |
|- ( ph -> ( E x. Z ) e. CC ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( E x. Z ) e. CC ) |
| 74 |
|
simpr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
| 75 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 76 |
52 75
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 77 |
76
|
sselda |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
| 78 |
59
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... N ) ) -> ( A x. V ) e. CC ) |
| 79 |
77 78
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> ( A x. V ) e. CC ) |
| 80 |
4 19
|
syl |
|- ( k = N -> ( A x. V ) = ( E x. Z ) ) |
| 81 |
74 79 80
|
fsumm1 |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) + ( E x. Z ) ) ) |
| 82 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 83 |
5 82
|
syl |
|- ( ph -> N e. ZZ ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ZZ ) |
| 85 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 86 |
84 85
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 87 |
52
|
zcnd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. CC ) |
| 88 |
|
ax-1cn |
|- 1 e. CC |
| 89 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
| 90 |
87 88 89
|
sylancl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) - 1 ) = M ) |
| 91 |
90
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ... ( N - 1 ) ) ) |
| 92 |
86 91
|
eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) |
| 93 |
92
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ( C x. X ) ) |
| 94 |
|
1zzd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> 1 e. ZZ ) |
| 95 |
52
|
peano2zd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M + 1 ) e. ZZ ) |
| 96 |
|
oveq12 |
|- ( ( A = C /\ V = X ) -> ( A x. V ) = ( C x. X ) ) |
| 97 |
2 96
|
syl |
|- ( k = ( j + 1 ) -> ( A x. V ) = ( C x. X ) ) |
| 98 |
94 95 84 79 97
|
fsumshftm |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ( C x. X ) ) |
| 99 |
93 98
|
eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) ) |
| 100 |
|
fzoval |
|- ( N e. ZZ -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 101 |
84 100
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 102 |
101
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) |
| 103 |
102
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( E x. Z ) ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) + ( E x. Z ) ) ) |
| 104 |
81 99 103
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( E x. Z ) ) ) |
| 105 |
63 73 104
|
comraddd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
| 106 |
105
|
oveq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) = ( ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 107 |
|
fzofzp1 |
|- ( j e. ( M ..^ N ) -> ( j + 1 ) e. ( M ... N ) ) |
| 108 |
2
|
simpld |
|- ( k = ( j + 1 ) -> A = C ) |
| 109 |
108
|
eleq1d |
|- ( k = ( j + 1 ) -> ( A e. CC <-> C e. CC ) ) |
| 110 |
109
|
rspccva |
|- ( ( A. k e. ( M ... N ) A e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> C e. CC ) |
| 111 |
33 107 110
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> C e. CC ) |
| 112 |
|
elfzofz |
|- ( j e. ( M ..^ N ) -> j e. ( M ... N ) ) |
| 113 |
1
|
simpld |
|- ( k = j -> A = B ) |
| 114 |
113
|
eleq1d |
|- ( k = j -> ( A e. CC <-> B e. CC ) ) |
| 115 |
114
|
rspccva |
|- ( ( A. k e. ( M ... N ) A e. CC /\ j e. ( M ... N ) ) -> B e. CC ) |
| 116 |
33 112 115
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> B e. CC ) |
| 117 |
2
|
simprd |
|- ( k = ( j + 1 ) -> V = X ) |
| 118 |
117
|
eleq1d |
|- ( k = ( j + 1 ) -> ( V e. CC <-> X e. CC ) ) |
| 119 |
118
|
rspccva |
|- ( ( A. k e. ( M ... N ) V e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> X e. CC ) |
| 120 |
37 107 119
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> X e. CC ) |
| 121 |
111 116 120
|
subdird |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( ( C - B ) x. X ) = ( ( C x. X ) - ( B x. X ) ) ) |
| 122 |
121
|
sumeq2dv |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = sum_ j e. ( M ..^ N ) ( ( C x. X ) - ( B x. X ) ) ) |
| 123 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
| 124 |
123
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
| 125 |
111 120
|
mulcld |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( C x. X ) e. CC ) |
| 126 |
116 120
|
mulcld |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. X ) e. CC ) |
| 127 |
124 125 126
|
fsumsub |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( C x. X ) - ( B x. X ) ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 128 |
122 127
|
eqtrd |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 130 |
124 126
|
fsumcl |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. X ) e. CC ) |
| 131 |
130
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. X ) e. CC ) |
| 132 |
73 131 63
|
subsub3d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) = ( ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 133 |
106 129 132
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) |
| 134 |
133
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) ) |
| 135 |
39
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( D x. Y ) e. CC ) |
| 136 |
131 63
|
subcld |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) e. CC ) |
| 137 |
73 135 136
|
nnncan1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) = ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) ) |
| 138 |
63 135
|
addcomd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
| 139 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 140 |
51 139
|
sylan |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 141 |
86
|
eleq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( k e. ( M ..^ N ) <-> k e. ( M ... ( N - 1 ) ) ) ) |
| 142 |
141
|
biimpar |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ..^ N ) ) |
| 143 |
142 61
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> ( A x. V ) e. CC ) |
| 144 |
140 143 22
|
fsum1p |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) ( A x. V ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) ) |
| 145 |
86
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) ( A x. V ) = sum_ k e. ( M ... ( N - 1 ) ) ( A x. V ) ) |
| 146 |
102
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) ) |
| 147 |
144 145 146
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) ( A x. V ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
| 148 |
138 147
|
eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = sum_ k e. ( M ..^ N ) ( A x. V ) ) |
| 149 |
|
oveq12 |
|- ( ( A = B /\ V = W ) -> ( A x. V ) = ( B x. W ) ) |
| 150 |
1 149
|
syl |
|- ( k = j -> ( A x. V ) = ( B x. W ) ) |
| 151 |
150
|
cbvsumv |
|- sum_ k e. ( M ..^ N ) ( A x. V ) = sum_ j e. ( M ..^ N ) ( B x. W ) |
| 152 |
148 151
|
eqtrdi |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = sum_ j e. ( M ..^ N ) ( B x. W ) ) |
| 153 |
152
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( B x. X ) - ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 154 |
131 63 135
|
subsub4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) ) ) |
| 155 |
1
|
simprd |
|- ( k = j -> V = W ) |
| 156 |
155
|
eleq1d |
|- ( k = j -> ( V e. CC <-> W e. CC ) ) |
| 157 |
156
|
rspccva |
|- ( ( A. k e. ( M ... N ) V e. CC /\ j e. ( M ... N ) ) -> W e. CC ) |
| 158 |
37 112 157
|
syl2an |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> W e. CC ) |
| 159 |
116 120 158
|
subdid |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. ( X - W ) ) = ( ( B x. X ) - ( B x. W ) ) ) |
| 160 |
159
|
sumeq2dv |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = sum_ j e. ( M ..^ N ) ( ( B x. X ) - ( B x. W ) ) ) |
| 161 |
116 158
|
mulcld |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. W ) e. CC ) |
| 162 |
124 126 161
|
fsumsub |
|- ( ph -> sum_ j e. ( M ..^ N ) ( ( B x. X ) - ( B x. W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 163 |
160 162
|
eqtrd |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 164 |
163
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 165 |
153 154 164
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) = sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) ) |
| 166 |
134 137 165
|
3eqtrrd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
| 167 |
|
uzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 168 |
5 167
|
syl |
|- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 169 |
47 166 168
|
mpjaodan |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |