| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumparts.b |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 = 𝐵 ∧ 𝑉 = 𝑊 ) ) |
| 2 |
|
fsumparts.c |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 = 𝐶 ∧ 𝑉 = 𝑋 ) ) |
| 3 |
|
fsumparts.d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 = 𝐷 ∧ 𝑉 = 𝑌 ) ) |
| 4 |
|
fsumparts.e |
⊢ ( 𝑘 = 𝑁 → ( 𝐴 = 𝐸 ∧ 𝑉 = 𝑍 ) ) |
| 5 |
|
fsumparts.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
|
fsumparts.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 7 |
|
fsumparts.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑉 ∈ ℂ ) |
| 8 |
|
sum0 |
⊢ Σ 𝑗 ∈ ∅ ( 𝐵 · ( 𝑋 − 𝑊 ) ) = 0 |
| 9 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 10 |
8 9
|
eqtr4i |
⊢ Σ 𝑗 ∈ ∅ ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( 0 − 0 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → 𝑁 = 𝑀 ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ..^ 𝑀 ) ) |
| 13 |
|
fzo0 |
⊢ ( 𝑀 ..^ 𝑀 ) = ∅ |
| 14 |
12 13
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
| 15 |
14
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = Σ 𝑗 ∈ ∅ ( 𝐵 · ( 𝑋 − 𝑊 ) ) ) |
| 16 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 18 |
|
eqtr3 |
⊢ ( ( 𝑘 = 𝑀 ∧ 𝑁 = 𝑀 ) → 𝑘 = 𝑁 ) |
| 19 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐸 ∧ 𝑉 = 𝑍 ) → ( 𝐴 · 𝑉 ) = ( 𝐸 · 𝑍 ) ) |
| 20 |
18 4 19
|
3syl |
⊢ ( ( 𝑘 = 𝑀 ∧ 𝑁 = 𝑀 ) → ( 𝐴 · 𝑉 ) = ( 𝐸 · 𝑍 ) ) |
| 21 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝑉 = 𝑌 ) → ( 𝐴 · 𝑉 ) = ( 𝐷 · 𝑌 ) ) |
| 22 |
3 21
|
syl |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 · 𝑉 ) = ( 𝐷 · 𝑌 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑘 = 𝑀 ∧ 𝑁 = 𝑀 ) → ( 𝐴 · 𝑉 ) = ( 𝐷 · 𝑌 ) ) |
| 24 |
20 23
|
eqeq12d |
⊢ ( ( 𝑘 = 𝑀 ∧ 𝑁 = 𝑀 ) → ( ( 𝐴 · 𝑉 ) = ( 𝐴 · 𝑉 ) ↔ ( 𝐸 · 𝑍 ) = ( 𝐷 · 𝑌 ) ) ) |
| 25 |
24
|
pm5.74da |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑁 = 𝑀 → ( 𝐴 · 𝑉 ) = ( 𝐴 · 𝑉 ) ) ↔ ( 𝑁 = 𝑀 → ( 𝐸 · 𝑍 ) = ( 𝐷 · 𝑌 ) ) ) ) |
| 26 |
|
eqidd |
⊢ ( 𝑁 = 𝑀 → ( 𝐴 · 𝑉 ) = ( 𝐴 · 𝑉 ) ) |
| 27 |
25 26
|
vtoclg |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 = 𝑀 → ( 𝐸 · 𝑍 ) = ( 𝐷 · 𝑌 ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑁 = 𝑀 ) → ( 𝐸 · 𝑍 ) = ( 𝐷 · 𝑌 ) ) |
| 29 |
17 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝐸 · 𝑍 ) = ( 𝐷 · 𝑌 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) = ( ( 𝐷 · 𝑌 ) − ( 𝐷 · 𝑌 ) ) ) |
| 31 |
3
|
simpld |
⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) |
| 32 |
31
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 33 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 34 |
32 33 17
|
rspcdva |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 35 |
3
|
simprd |
⊢ ( 𝑘 = 𝑀 → 𝑉 = 𝑌 ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝑉 ∈ ℂ ↔ 𝑌 ∈ ℂ ) ) |
| 37 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑉 ∈ ℂ ) |
| 38 |
36 37 17
|
rspcdva |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 39 |
34 38
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝑌 ) ∈ ℂ ) |
| 40 |
39
|
subidd |
⊢ ( 𝜑 → ( ( 𝐷 · 𝑌 ) − ( 𝐷 · 𝑌 ) ) = 0 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( 𝐷 · 𝑌 ) − ( 𝐷 · 𝑌 ) ) = 0 ) |
| 42 |
30 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) = 0 ) |
| 43 |
14
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) = Σ 𝑗 ∈ ∅ ( ( 𝐶 − 𝐵 ) · 𝑋 ) ) |
| 44 |
|
sum0 |
⊢ Σ 𝑗 ∈ ∅ ( ( 𝐶 − 𝐵 ) · 𝑋 ) = 0 |
| 45 |
43 44
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) = 0 ) |
| 46 |
42 45
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) ) = ( 0 − 0 ) ) |
| 47 |
10 15 46
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) ) ) |
| 48 |
|
fzofi |
⊢ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∈ Fin |
| 49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∈ Fin ) |
| 50 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 51 |
5 50
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 53 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 54 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 55 |
|
fzoss1 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 + 1 ) ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| 56 |
52 53 54 55
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
| 57 |
56
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| 58 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 59 |
6 7
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 60 |
58 59
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 61 |
60
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 62 |
57 61
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 63 |
49 62
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 64 |
4
|
simpld |
⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐸 ) |
| 65 |
64
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( 𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 66 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 67 |
5 66
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 68 |
65 33 67
|
rspcdva |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 69 |
4
|
simprd |
⊢ ( 𝑘 = 𝑁 → 𝑉 = 𝑍 ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( 𝑉 ∈ ℂ ↔ 𝑍 ∈ ℂ ) ) |
| 71 |
70 37 67
|
rspcdva |
⊢ ( 𝜑 → 𝑍 ∈ ℂ ) |
| 72 |
68 71
|
mulcld |
⊢ ( 𝜑 → ( 𝐸 · 𝑍 ) ∈ ℂ ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐸 · 𝑍 ) ∈ ℂ ) |
| 74 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 75 |
|
fzp1ss |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 76 |
52 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 77 |
76
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 78 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 79 |
77 78
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 80 |
4 19
|
syl |
⊢ ( 𝑘 = 𝑁 → ( 𝐴 · 𝑉 ) = ( 𝐸 · 𝑍 ) ) |
| 81 |
74 79 80
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ( 𝐴 · 𝑉 ) = ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) + ( 𝐸 · 𝑍 ) ) ) |
| 82 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 83 |
5 82
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 85 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 87 |
52
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℂ ) |
| 88 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 89 |
|
pncan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 90 |
87 88 89
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 91 |
90
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 92 |
86 91
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 ..^ 𝑁 ) = ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) |
| 93 |
92
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) = Σ 𝑗 ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐶 · 𝑋 ) ) |
| 94 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 1 ∈ ℤ ) |
| 95 |
52
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 + 1 ) ∈ ℤ ) |
| 96 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝑉 = 𝑋 ) → ( 𝐴 · 𝑉 ) = ( 𝐶 · 𝑋 ) ) |
| 97 |
2 96
|
syl |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 · 𝑉 ) = ( 𝐶 · 𝑋 ) ) |
| 98 |
94 95 84 79 97
|
fsumshftm |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ( 𝐴 · 𝑉 ) = Σ 𝑗 ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐶 · 𝑋 ) ) |
| 99 |
93 98
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) = Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ( 𝐴 · 𝑉 ) ) |
| 100 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 + 1 ) ..^ 𝑁 ) = ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ) |
| 101 |
84 100
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ..^ 𝑁 ) = ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ) |
| 102 |
101
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) = Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) ) |
| 103 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐸 · 𝑍 ) ) = ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) + ( 𝐸 · 𝑍 ) ) ) |
| 104 |
81 99 103
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) = ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐸 · 𝑍 ) ) ) |
| 105 |
63 73 104
|
comraddd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) = ( ( 𝐸 · 𝑍 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) |
| 106 |
105
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ) = ( ( ( 𝐸 · 𝑍 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ) ) |
| 107 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 108 |
2
|
simpld |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) |
| 109 |
108
|
eleq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 110 |
109
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 111 |
33 107 110
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 112 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) |
| 113 |
1
|
simpld |
⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) |
| 114 |
113
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 115 |
114
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 116 |
33 112 115
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 117 |
2
|
simprd |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝑉 = 𝑋 ) |
| 118 |
117
|
eleq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑉 ∈ ℂ ↔ 𝑋 ∈ ℂ ) ) |
| 119 |
118
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑉 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 120 |
37 107 119
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 121 |
111 116 120
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐶 − 𝐵 ) · 𝑋 ) = ( ( 𝐶 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| 122 |
121
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| 123 |
|
fzofi |
⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin |
| 124 |
123
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 125 |
111 120
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐶 · 𝑋 ) ∈ ℂ ) |
| 126 |
116 120
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐵 · 𝑋 ) ∈ ℂ ) |
| 127 |
124 125 126
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ) ) |
| 128 |
122 127
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐶 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ) ) |
| 130 |
124 126
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ∈ ℂ ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ∈ ℂ ) |
| 132 |
73 131 63
|
subsub3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐸 · 𝑍 ) − ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) = ( ( ( 𝐸 · 𝑍 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) ) ) |
| 133 |
106 129 132
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) = ( ( 𝐸 · 𝑍 ) − ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) ) |
| 134 |
133
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) ) = ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − ( ( 𝐸 · 𝑍 ) − ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) ) ) |
| 135 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐷 · 𝑌 ) ∈ ℂ ) |
| 136 |
131 63
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ∈ ℂ ) |
| 137 |
73 135 136
|
nnncan1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − ( ( 𝐸 · 𝑍 ) − ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) ) = ( ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) − ( 𝐷 · 𝑌 ) ) ) |
| 138 |
63 135
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐷 · 𝑌 ) ) = ( ( 𝐷 · 𝑌 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) |
| 139 |
|
eluzp1m1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 140 |
51 139
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 141 |
86
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) ) |
| 142 |
141
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| 143 |
142 61
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 · 𝑉 ) ∈ ℂ ) |
| 144 |
140 143 22
|
fsum1p |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) = ( ( 𝐷 · 𝑌 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) ) ) |
| 145 |
86
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 · 𝑉 ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) ) |
| 146 |
102
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐷 · 𝑌 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) = ( ( 𝐷 · 𝑌 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 · 𝑉 ) ) ) |
| 147 |
144 145 146
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 · 𝑉 ) = ( ( 𝐷 · 𝑌 ) + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) ) |
| 148 |
138 147
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐷 · 𝑌 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) |
| 149 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝑉 = 𝑊 ) → ( 𝐴 · 𝑉 ) = ( 𝐵 · 𝑊 ) ) |
| 150 |
1 149
|
syl |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 · 𝑉 ) = ( 𝐵 · 𝑊 ) ) |
| 151 |
150
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 · 𝑉 ) = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑊 ) |
| 152 |
148 151
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐷 · 𝑌 ) ) = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑊 ) ) |
| 153 |
152
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐷 · 𝑌 ) ) ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑊 ) ) ) |
| 154 |
131 63 135
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) − ( 𝐷 · 𝑌 ) ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) + ( 𝐷 · 𝑌 ) ) ) ) |
| 155 |
1
|
simprd |
⊢ ( 𝑘 = 𝑗 → 𝑉 = 𝑊 ) |
| 156 |
155
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝑉 ∈ ℂ ↔ 𝑊 ∈ ℂ ) ) |
| 157 |
156
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝑉 ∈ ℂ ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑊 ∈ ℂ ) |
| 158 |
37 112 157
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑊 ∈ ℂ ) |
| 159 |
116 120 158
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( ( 𝐵 · 𝑋 ) − ( 𝐵 · 𝑊 ) ) ) |
| 160 |
159
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐵 · 𝑋 ) − ( 𝐵 · 𝑊 ) ) ) |
| 161 |
116 158
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐵 · 𝑊 ) ∈ ℂ ) |
| 162 |
124 126 161
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐵 · 𝑋 ) − ( 𝐵 · 𝑊 ) ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑊 ) ) ) |
| 163 |
160 162
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑊 ) ) ) |
| 164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑊 ) ) ) |
| 165 |
153 154 164
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · 𝑋 ) − Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ( 𝐴 · 𝑉 ) ) − ( 𝐷 · 𝑌 ) ) = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) ) |
| 166 |
134 137 165
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) ) ) |
| 167 |
|
uzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 168 |
5 167
|
syl |
⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 169 |
47 166 168
|
mpjaodan |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 · ( 𝑋 − 𝑊 ) ) = ( ( ( 𝐸 · 𝑍 ) − ( 𝐷 · 𝑌 ) ) − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐶 − 𝐵 ) · 𝑋 ) ) ) |