| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 3 |
2
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 4 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 5 |
1
|
pntrval |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑅 ‘ 𝑥 ) = ( ( ψ ‘ 𝑥 ) − 𝑥 ) ) |
| 6 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 7 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 9 |
8 6
|
resubcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) − 𝑥 ) ∈ ℝ ) |
| 10 |
5 9
|
eqeltrd |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑅 ‘ 𝑥 ) ∈ ℝ ) |
| 11 |
|
rerpdivcl |
⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 12 |
10 11
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
| 14 |
13
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
| 15 |
5
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) − 𝑥 ) / 𝑥 ) ) |
| 16 |
8
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
| 17 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 18 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 19 |
16 17 17 18
|
divsubdird |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ψ ‘ 𝑥 ) − 𝑥 ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − ( 𝑥 / 𝑥 ) ) ) |
| 20 |
17 18
|
dividd |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 𝑥 ) = 1 ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − ( 𝑥 / 𝑥 ) ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) |
| 22 |
15 19 21
|
3eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) |
| 23 |
22
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) |
| 24 |
|
rerpdivcl |
⊢ ( ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 25 |
8 24
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 26 |
25
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 27 |
|
1red |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℝ ) |
| 28 |
|
chpo1ub |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |
| 29 |
28
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 30 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 31 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
| 32 |
2 30 31
|
mp2an |
⊢ ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) |
| 33 |
32
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
| 34 |
26 27 29 33
|
o1sub2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) ∈ 𝑂(1) ) |
| 35 |
23 34
|
eqeltrid |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 36 |
|
chpcl |
⊢ ( 𝑦 ∈ ℝ → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 37 |
|
peano2re |
⊢ ( ( ψ ‘ 𝑦 ) ∈ ℝ → ( ( ψ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 38 |
36 37
|
syl |
⊢ ( 𝑦 ∈ ℝ → ( ( ψ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 39 |
38
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( ( ψ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 40 |
22
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) = ( abs ‘ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) ) |
| 42 |
|
1re |
⊢ 1 ∈ ℝ |
| 43 |
38
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 44 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ψ ‘ 𝑦 ) + 1 ) ∈ ℝ ) → ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ∈ ℝ ) |
| 45 |
42 43 44
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ∈ ℝ ) |
| 46 |
|
0red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 ∈ ℝ ) |
| 47 |
25
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 48 |
|
chpge0 |
⊢ ( 𝑦 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑦 ) ) |
| 49 |
48
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 ≤ ( ψ ‘ 𝑦 ) ) |
| 50 |
36
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 51 |
|
addge02 |
⊢ ( ( 1 ∈ ℝ ∧ ( ψ ‘ 𝑦 ) ∈ ℝ ) → ( 0 ≤ ( ψ ‘ 𝑦 ) ↔ 1 ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 52 |
42 50 51
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 0 ≤ ( ψ ‘ 𝑦 ) ↔ 1 ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 53 |
49 52
|
mpbid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 1 ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) |
| 54 |
|
suble0 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ψ ‘ 𝑦 ) + 1 ) ∈ ℝ ) → ( ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ≤ 0 ↔ 1 ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 55 |
42 43 54
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ≤ 0 ↔ 1 ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 56 |
53 55
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ≤ 0 ) |
| 57 |
8
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 58 |
6
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
| 59 |
|
chpge0 |
⊢ ( 𝑥 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑥 ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 ≤ ( ψ ‘ 𝑥 ) ) |
| 61 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 62 |
61
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 63 |
|
divge0 |
⊢ ( ( ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ψ ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → 0 ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
| 64 |
57 60 62 63
|
syl21anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
| 65 |
45 46 47 56 64
|
letrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
| 66 |
|
2re |
⊢ 2 ∈ ℝ |
| 67 |
|
readdcl |
⊢ ( ( ( ψ ‘ 𝑦 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ψ ‘ 𝑦 ) + 2 ) ∈ ℝ ) |
| 68 |
50 66 67
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑦 ) + 2 ) ∈ ℝ ) |
| 69 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 1 ∈ ℝ ) |
| 70 |
58
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → 𝑥 ∈ ℝ ) |
| 71 |
|
1red |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → 1 ∈ ℝ ) |
| 72 |
66
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → 2 ∈ ℝ ) |
| 73 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → 𝑥 ≤ 1 ) |
| 74 |
|
1lt2 |
⊢ 1 < 2 |
| 75 |
74
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → 1 < 2 ) |
| 76 |
70 71 72 73 75
|
lelttrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → 𝑥 < 2 ) |
| 77 |
|
chpeq0 |
⊢ ( 𝑥 ∈ ℝ → ( ( ψ ‘ 𝑥 ) = 0 ↔ 𝑥 < 2 ) ) |
| 78 |
70 77
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → ( ( ψ ‘ 𝑥 ) = 0 ↔ 𝑥 < 2 ) ) |
| 79 |
76 78
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → ( ψ ‘ 𝑥 ) = 0 ) |
| 80 |
79
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) = ( 0 / 𝑥 ) ) |
| 81 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ+ ) |
| 82 |
81
|
rpcnne0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 83 |
|
div0 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 0 / 𝑥 ) = 0 ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 0 / 𝑥 ) = 0 ) |
| 85 |
84 49
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 0 / 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → ( 0 / 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 87 |
80 86
|
eqbrtrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 𝑥 ≤ 1 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 88 |
47
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 89 |
57
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 90 |
50
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 91 |
|
0lt1 |
⊢ 0 < 1 |
| 92 |
91
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 < 1 ) |
| 93 |
|
lediv2a |
⊢ ( ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ψ ‘ 𝑥 ) ) ) ∧ 1 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 1 ) ) |
| 94 |
93
|
ex |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ψ ‘ 𝑥 ) ) ) → ( 1 ≤ 𝑥 → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 1 ) ) ) |
| 95 |
69 92 62 57 60 94
|
syl212anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 1 ≤ 𝑥 → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 1 ) ) ) |
| 96 |
95
|
imp |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 1 ) ) |
| 97 |
89
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
| 98 |
97
|
div1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 1 ) = ( ψ ‘ 𝑥 ) ) |
| 99 |
96 98
|
breqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ψ ‘ 𝑥 ) ) |
| 100 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 101 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 → 𝑥 ≤ 𝑦 ) ) |
| 102 |
6 101
|
sylan |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 → 𝑥 ≤ 𝑦 ) ) |
| 103 |
102
|
3impia |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 104 |
|
chpwordi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( ψ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 105 |
58 100 103 104
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ψ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 106 |
105
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 107 |
88 89 90 99 106
|
letrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ∧ 1 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 108 |
58 69 87 107
|
lecasei |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 109 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 110 |
|
nn0addge1 |
⊢ ( ( ( ψ ‘ 𝑦 ) ∈ ℝ ∧ 2 ∈ ℕ0 ) → ( ψ ‘ 𝑦 ) ≤ ( ( ψ ‘ 𝑦 ) + 2 ) ) |
| 111 |
50 109 110
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ψ ‘ 𝑦 ) ≤ ( ( ψ ‘ 𝑦 ) + 2 ) ) |
| 112 |
47 50 68 108 111
|
letrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑦 ) + 2 ) ) |
| 113 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 114 |
113
|
oveq2i |
⊢ ( ( ψ ‘ 𝑦 ) + 2 ) = ( ( ψ ‘ 𝑦 ) + ( 1 + 1 ) ) |
| 115 |
50
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ψ ‘ 𝑦 ) ∈ ℂ ) |
| 116 |
30
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 1 ∈ ℂ ) |
| 117 |
115 116 116
|
add12d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑦 ) + ( 1 + 1 ) ) = ( 1 + ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 118 |
114 117
|
eqtrid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑦 ) + 2 ) = ( 1 + ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 119 |
112 118
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( 1 + ( ( ψ ‘ 𝑦 ) + 1 ) ) ) |
| 120 |
47 69 43
|
absdifled |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( abs ‘ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ↔ ( ( 1 − ( ( ψ ‘ 𝑦 ) + 1 ) ) ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∧ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( 1 + ( ( ψ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 121 |
65 119 120
|
mpbir2and |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) − 1 ) ) ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) |
| 122 |
41 121
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) |
| 123 |
122
|
3expb |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) |
| 124 |
123
|
adantrlr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) |
| 125 |
124
|
adantll |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ≤ ( ( ψ ‘ 𝑦 ) + 1 ) ) |
| 126 |
3 4 14 35 39 125
|
o1bddrp |
⊢ ( ⊤ → ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ≤ 𝑐 ) |
| 127 |
126
|
mptru |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑥 ) / 𝑥 ) ) ≤ 𝑐 |