Metamath Proof Explorer


Theorem efgt1

Description: The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion efgt1 ( 𝐴 ∈ ℝ+ → 1 < ( exp ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 1red ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ )
2 1re 1 ∈ ℝ
3 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
4 readdcl ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 + 𝐴 ) ∈ ℝ )
5 2 3 4 sylancr ( 𝐴 ∈ ℝ+ → ( 1 + 𝐴 ) ∈ ℝ )
6 3 reefcld ( 𝐴 ∈ ℝ+ → ( exp ‘ 𝐴 ) ∈ ℝ )
7 ltaddrp ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 1 < ( 1 + 𝐴 ) )
8 2 7 mpan ( 𝐴 ∈ ℝ+ → 1 < ( 1 + 𝐴 ) )
9 efgt1p ( 𝐴 ∈ ℝ+ → ( 1 + 𝐴 ) < ( exp ‘ 𝐴 ) )
10 1 5 6 8 9 lttrd ( 𝐴 ∈ ℝ+ → 1 < ( exp ‘ 𝐴 ) )