| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 | 1 2 3 4 5 6 | pntlemd |  |-  ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) | 
						
							| 12 | 11 | simp2d |  |-  ( ph -> D e. RR+ ) | 
						
							| 13 | 7 12 | rpdivcld |  |-  ( ph -> ( U / D ) e. RR+ ) | 
						
							| 14 | 9 13 | eqeltrid |  |-  ( ph -> E e. RR+ ) | 
						
							| 15 | 3 14 | rpdivcld |  |-  ( ph -> ( B / E ) e. RR+ ) | 
						
							| 16 | 15 | rpred |  |-  ( ph -> ( B / E ) e. RR ) | 
						
							| 17 | 16 | rpefcld |  |-  ( ph -> ( exp ` ( B / E ) ) e. RR+ ) | 
						
							| 18 | 10 17 | eqeltrid |  |-  ( ph -> K e. RR+ ) | 
						
							| 19 | 14 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 20 | 14 | rpgt0d |  |-  ( ph -> 0 < E ) | 
						
							| 21 | 7 | rpred |  |-  ( ph -> U e. RR ) | 
						
							| 22 | 2 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 23 | 12 | rpred |  |-  ( ph -> D e. RR ) | 
						
							| 24 | 22 | ltp1d |  |-  ( ph -> A < ( A + 1 ) ) | 
						
							| 25 | 24 5 | breqtrrdi |  |-  ( ph -> A < D ) | 
						
							| 26 | 21 22 23 8 25 | lelttrd |  |-  ( ph -> U < D ) | 
						
							| 27 | 12 | rpcnd |  |-  ( ph -> D e. CC ) | 
						
							| 28 | 27 | mulridd |  |-  ( ph -> ( D x. 1 ) = D ) | 
						
							| 29 | 26 28 | breqtrrd |  |-  ( ph -> U < ( D x. 1 ) ) | 
						
							| 30 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 31 | 21 30 12 | ltdivmuld |  |-  ( ph -> ( ( U / D ) < 1 <-> U < ( D x. 1 ) ) ) | 
						
							| 32 | 29 31 | mpbird |  |-  ( ph -> ( U / D ) < 1 ) | 
						
							| 33 | 9 32 | eqbrtrid |  |-  ( ph -> E < 1 ) | 
						
							| 34 |  | 0xr |  |-  0 e. RR* | 
						
							| 35 |  | 1xr |  |-  1 e. RR* | 
						
							| 36 |  | elioo2 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( E e. ( 0 (,) 1 ) <-> ( E e. RR /\ 0 < E /\ E < 1 ) ) ) | 
						
							| 37 | 34 35 36 | mp2an |  |-  ( E e. ( 0 (,) 1 ) <-> ( E e. RR /\ 0 < E /\ E < 1 ) ) | 
						
							| 38 | 19 20 33 37 | syl3anbrc |  |-  ( ph -> E e. ( 0 (,) 1 ) ) | 
						
							| 39 |  | efgt1 |  |-  ( ( B / E ) e. RR+ -> 1 < ( exp ` ( B / E ) ) ) | 
						
							| 40 | 15 39 | syl |  |-  ( ph -> 1 < ( exp ` ( B / E ) ) ) | 
						
							| 41 | 40 10 | breqtrrdi |  |-  ( ph -> 1 < K ) | 
						
							| 42 |  | 1re |  |-  1 e. RR | 
						
							| 43 |  | ltaddrp |  |-  ( ( 1 e. RR /\ A e. RR+ ) -> 1 < ( 1 + A ) ) | 
						
							| 44 | 42 2 43 | sylancr |  |-  ( ph -> 1 < ( 1 + A ) ) | 
						
							| 45 | 7 | rpcnne0d |  |-  ( ph -> ( U e. CC /\ U =/= 0 ) ) | 
						
							| 46 |  | divid |  |-  ( ( U e. CC /\ U =/= 0 ) -> ( U / U ) = 1 ) | 
						
							| 47 | 45 46 | syl |  |-  ( ph -> ( U / U ) = 1 ) | 
						
							| 48 | 2 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 49 |  | ax-1cn |  |-  1 e. CC | 
						
							| 50 |  | addcom |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) | 
						
							| 51 | 48 49 50 | sylancl |  |-  ( ph -> ( A + 1 ) = ( 1 + A ) ) | 
						
							| 52 | 5 51 | eqtrid |  |-  ( ph -> D = ( 1 + A ) ) | 
						
							| 53 | 44 47 52 | 3brtr4d |  |-  ( ph -> ( U / U ) < D ) | 
						
							| 54 | 21 7 12 53 | ltdiv23d |  |-  ( ph -> ( U / D ) < U ) | 
						
							| 55 | 9 54 | eqbrtrid |  |-  ( ph -> E < U ) | 
						
							| 56 |  | difrp |  |-  ( ( E e. RR /\ U e. RR ) -> ( E < U <-> ( U - E ) e. RR+ ) ) | 
						
							| 57 | 19 21 56 | syl2anc |  |-  ( ph -> ( E < U <-> ( U - E ) e. RR+ ) ) | 
						
							| 58 | 55 57 | mpbid |  |-  ( ph -> ( U - E ) e. RR+ ) | 
						
							| 59 | 38 41 58 | 3jca |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 60 | 14 18 59 | 3jca |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |