| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 | 11 | simpld |  |-  ( ph -> Y e. RR+ ) | 
						
							| 16 |  | 4nn |  |-  4 e. NN | 
						
							| 17 |  | nnrp |  |-  ( 4 e. NN -> 4 e. RR+ ) | 
						
							| 18 | 16 17 | ax-mp |  |-  4 e. RR+ | 
						
							| 19 | 1 2 3 4 5 6 | pntlemd |  |-  ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) | 
						
							| 20 | 19 | simp1d |  |-  ( ph -> L e. RR+ ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 22 | 21 | simp1d |  |-  ( ph -> E e. RR+ ) | 
						
							| 23 | 20 22 | rpmulcld |  |-  ( ph -> ( L x. E ) e. RR+ ) | 
						
							| 24 |  | rpdivcl |  |-  ( ( 4 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 4 / ( L x. E ) ) e. RR+ ) | 
						
							| 25 | 18 23 24 | sylancr |  |-  ( ph -> ( 4 / ( L x. E ) ) e. RR+ ) | 
						
							| 26 | 15 25 | rpaddcld |  |-  ( ph -> ( Y + ( 4 / ( L x. E ) ) ) e. RR+ ) | 
						
							| 27 |  | 2z |  |-  2 e. ZZ | 
						
							| 28 |  | rpexpcl |  |-  ( ( ( Y + ( 4 / ( L x. E ) ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR+ ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR+ ) | 
						
							| 30 | 12 | simpld |  |-  ( ph -> X e. RR+ ) | 
						
							| 31 | 21 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 32 |  | rpexpcl |  |-  ( ( K e. RR+ /\ 2 e. ZZ ) -> ( K ^ 2 ) e. RR+ ) | 
						
							| 33 | 31 27 32 | sylancl |  |-  ( ph -> ( K ^ 2 ) e. RR+ ) | 
						
							| 34 | 30 33 | rpmulcld |  |-  ( ph -> ( X x. ( K ^ 2 ) ) e. RR+ ) | 
						
							| 35 |  | 4z |  |-  4 e. ZZ | 
						
							| 36 |  | rpexpcl |  |-  ( ( ( X x. ( K ^ 2 ) ) e. RR+ /\ 4 e. ZZ ) -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ ) | 
						
							| 37 | 34 35 36 | sylancl |  |-  ( ph -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ ) | 
						
							| 38 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 39 |  | 2nn |  |-  2 e. NN | 
						
							| 40 | 38 39 | decnncl |  |-  ; 3 2 e. NN | 
						
							| 41 |  | nnrp |  |-  ( ; 3 2 e. NN -> ; 3 2 e. RR+ ) | 
						
							| 42 | 40 41 | ax-mp |  |-  ; 3 2 e. RR+ | 
						
							| 43 |  | rpmulcl |  |-  ( ( ; 3 2 e. RR+ /\ B e. RR+ ) -> ( ; 3 2 x. B ) e. RR+ ) | 
						
							| 44 | 42 3 43 | sylancr |  |-  ( ph -> ( ; 3 2 x. B ) e. RR+ ) | 
						
							| 45 | 21 | simp3d |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 46 | 45 | simp3d |  |-  ( ph -> ( U - E ) e. RR+ ) | 
						
							| 47 |  | rpexpcl |  |-  ( ( E e. RR+ /\ 2 e. ZZ ) -> ( E ^ 2 ) e. RR+ ) | 
						
							| 48 | 22 27 47 | sylancl |  |-  ( ph -> ( E ^ 2 ) e. RR+ ) | 
						
							| 49 | 20 48 | rpmulcld |  |-  ( ph -> ( L x. ( E ^ 2 ) ) e. RR+ ) | 
						
							| 50 | 46 49 | rpmulcld |  |-  ( ph -> ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) e. RR+ ) | 
						
							| 51 | 44 50 | rpdivcld |  |-  ( ph -> ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) e. RR+ ) | 
						
							| 52 |  | 3rp |  |-  3 e. RR+ | 
						
							| 53 |  | rpmulcl |  |-  ( ( U e. RR+ /\ 3 e. RR+ ) -> ( U x. 3 ) e. RR+ ) | 
						
							| 54 | 7 52 53 | sylancl |  |-  ( ph -> ( U x. 3 ) e. RR+ ) | 
						
							| 55 | 54 13 | rpaddcld |  |-  ( ph -> ( ( U x. 3 ) + C ) e. RR+ ) | 
						
							| 56 | 51 55 | rpmulcld |  |-  ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR+ ) | 
						
							| 57 | 56 | rpred |  |-  ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR ) | 
						
							| 58 | 57 | rpefcld |  |-  ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) e. RR+ ) | 
						
							| 59 | 37 58 | rpaddcld |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) e. RR+ ) | 
						
							| 60 | 29 59 | rpaddcld |  |-  ( ph -> ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) e. RR+ ) | 
						
							| 61 | 14 60 | eqeltrid |  |-  ( ph -> W e. RR+ ) |