| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | pntlema |  |-  ( ph -> W e. RR+ ) | 
						
							| 17 | 16 | rpred |  |-  ( ph -> W e. RR ) | 
						
							| 18 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 19 |  | elico2 |  |-  ( ( W e. RR /\ +oo e. RR* ) -> ( Z e. ( W [,) +oo ) <-> ( Z e. RR /\ W <_ Z /\ Z < +oo ) ) ) | 
						
							| 20 | 17 18 19 | sylancl |  |-  ( ph -> ( Z e. ( W [,) +oo ) <-> ( Z e. RR /\ W <_ Z /\ Z < +oo ) ) ) | 
						
							| 21 | 15 20 | mpbid |  |-  ( ph -> ( Z e. RR /\ W <_ Z /\ Z < +oo ) ) | 
						
							| 22 | 21 | simp1d |  |-  ( ph -> Z e. RR ) | 
						
							| 23 | 21 | simp2d |  |-  ( ph -> W <_ Z ) | 
						
							| 24 | 22 16 23 | rpgecld |  |-  ( ph -> Z e. RR+ ) | 
						
							| 25 |  | 1re |  |-  1 e. RR | 
						
							| 26 | 25 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 27 |  | ere |  |-  _e e. RR | 
						
							| 28 | 27 | a1i |  |-  ( ph -> _e e. RR ) | 
						
							| 29 | 24 | rpsqrtcld |  |-  ( ph -> ( sqrt ` Z ) e. RR+ ) | 
						
							| 30 | 29 | rpred |  |-  ( ph -> ( sqrt ` Z ) e. RR ) | 
						
							| 31 |  | 1lt2 |  |-  1 < 2 | 
						
							| 32 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 33 | 32 | simpli |  |-  2 < _e | 
						
							| 34 |  | 2re |  |-  2 e. RR | 
						
							| 35 | 25 34 27 | lttri |  |-  ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) | 
						
							| 36 | 31 33 35 | mp2an |  |-  1 < _e | 
						
							| 37 | 36 | a1i |  |-  ( ph -> 1 < _e ) | 
						
							| 38 |  | 4re |  |-  4 e. RR | 
						
							| 39 | 38 | a1i |  |-  ( ph -> 4 e. RR ) | 
						
							| 40 | 32 | simpri |  |-  _e < 3 | 
						
							| 41 |  | 3lt4 |  |-  3 < 4 | 
						
							| 42 |  | 3re |  |-  3 e. RR | 
						
							| 43 | 27 42 38 | lttri |  |-  ( ( _e < 3 /\ 3 < 4 ) -> _e < 4 ) | 
						
							| 44 | 40 41 43 | mp2an |  |-  _e < 4 | 
						
							| 45 | 44 | a1i |  |-  ( ph -> _e < 4 ) | 
						
							| 46 |  | 4nn |  |-  4 e. NN | 
						
							| 47 |  | nnrp |  |-  ( 4 e. NN -> 4 e. RR+ ) | 
						
							| 48 | 46 47 | ax-mp |  |-  4 e. RR+ | 
						
							| 49 | 1 2 3 4 5 6 | pntlemd |  |-  ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) | 
						
							| 50 | 49 | simp1d |  |-  ( ph -> L e. RR+ ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 52 | 51 | simp1d |  |-  ( ph -> E e. RR+ ) | 
						
							| 53 | 50 52 | rpmulcld |  |-  ( ph -> ( L x. E ) e. RR+ ) | 
						
							| 54 |  | rpdivcl |  |-  ( ( 4 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 4 / ( L x. E ) ) e. RR+ ) | 
						
							| 55 | 48 53 54 | sylancr |  |-  ( ph -> ( 4 / ( L x. E ) ) e. RR+ ) | 
						
							| 56 | 55 | rpred |  |-  ( ph -> ( 4 / ( L x. E ) ) e. RR ) | 
						
							| 57 | 53 | rpred |  |-  ( ph -> ( L x. E ) e. RR ) | 
						
							| 58 | 52 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 59 | 50 | rpred |  |-  ( ph -> L e. RR ) | 
						
							| 60 |  | eliooord |  |-  ( L e. ( 0 (,) 1 ) -> ( 0 < L /\ L < 1 ) ) | 
						
							| 61 | 4 60 | syl |  |-  ( ph -> ( 0 < L /\ L < 1 ) ) | 
						
							| 62 | 61 | simprd |  |-  ( ph -> L < 1 ) | 
						
							| 63 | 59 26 52 62 | ltmul1dd |  |-  ( ph -> ( L x. E ) < ( 1 x. E ) ) | 
						
							| 64 | 52 | rpcnd |  |-  ( ph -> E e. CC ) | 
						
							| 65 | 64 | mullidd |  |-  ( ph -> ( 1 x. E ) = E ) | 
						
							| 66 | 63 65 | breqtrd |  |-  ( ph -> ( L x. E ) < E ) | 
						
							| 67 | 51 | simp3d |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 68 | 67 | simp1d |  |-  ( ph -> E e. ( 0 (,) 1 ) ) | 
						
							| 69 |  | eliooord |  |-  ( E e. ( 0 (,) 1 ) -> ( 0 < E /\ E < 1 ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ph -> ( 0 < E /\ E < 1 ) ) | 
						
							| 71 | 70 | simprd |  |-  ( ph -> E < 1 ) | 
						
							| 72 | 57 58 26 66 71 | lttrd |  |-  ( ph -> ( L x. E ) < 1 ) | 
						
							| 73 |  | 4pos |  |-  0 < 4 | 
						
							| 74 | 39 73 | jctir |  |-  ( ph -> ( 4 e. RR /\ 0 < 4 ) ) | 
						
							| 75 |  | ltmul2 |  |-  ( ( ( L x. E ) e. RR /\ 1 e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( L x. E ) < 1 <-> ( 4 x. ( L x. E ) ) < ( 4 x. 1 ) ) ) | 
						
							| 76 | 57 26 74 75 | syl3anc |  |-  ( ph -> ( ( L x. E ) < 1 <-> ( 4 x. ( L x. E ) ) < ( 4 x. 1 ) ) ) | 
						
							| 77 | 72 76 | mpbid |  |-  ( ph -> ( 4 x. ( L x. E ) ) < ( 4 x. 1 ) ) | 
						
							| 78 |  | 4cn |  |-  4 e. CC | 
						
							| 79 | 78 | mulridi |  |-  ( 4 x. 1 ) = 4 | 
						
							| 80 | 77 79 | breqtrdi |  |-  ( ph -> ( 4 x. ( L x. E ) ) < 4 ) | 
						
							| 81 | 39 39 53 | ltmuldivd |  |-  ( ph -> ( ( 4 x. ( L x. E ) ) < 4 <-> 4 < ( 4 / ( L x. E ) ) ) ) | 
						
							| 82 | 80 81 | mpbid |  |-  ( ph -> 4 < ( 4 / ( L x. E ) ) ) | 
						
							| 83 | 11 | simpld |  |-  ( ph -> Y e. RR+ ) | 
						
							| 84 | 83 55 | rpaddcld |  |-  ( ph -> ( Y + ( 4 / ( L x. E ) ) ) e. RR+ ) | 
						
							| 85 | 84 | rpred |  |-  ( ph -> ( Y + ( 4 / ( L x. E ) ) ) e. RR ) | 
						
							| 86 | 56 83 | ltaddrp2d |  |-  ( ph -> ( 4 / ( L x. E ) ) < ( Y + ( 4 / ( L x. E ) ) ) ) | 
						
							| 87 | 85 | resqcld |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR ) | 
						
							| 88 | 12 | simpld |  |-  ( ph -> X e. RR+ ) | 
						
							| 89 | 51 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 90 |  | 2z |  |-  2 e. ZZ | 
						
							| 91 |  | rpexpcl |  |-  ( ( K e. RR+ /\ 2 e. ZZ ) -> ( K ^ 2 ) e. RR+ ) | 
						
							| 92 | 89 90 91 | sylancl |  |-  ( ph -> ( K ^ 2 ) e. RR+ ) | 
						
							| 93 | 88 92 | rpmulcld |  |-  ( ph -> ( X x. ( K ^ 2 ) ) e. RR+ ) | 
						
							| 94 |  | 4z |  |-  4 e. ZZ | 
						
							| 95 |  | rpexpcl |  |-  ( ( ( X x. ( K ^ 2 ) ) e. RR+ /\ 4 e. ZZ ) -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ ) | 
						
							| 96 | 93 94 95 | sylancl |  |-  ( ph -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ ) | 
						
							| 97 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 98 |  | 2nn |  |-  2 e. NN | 
						
							| 99 | 97 98 | decnncl |  |-  ; 3 2 e. NN | 
						
							| 100 |  | nnrp |  |-  ( ; 3 2 e. NN -> ; 3 2 e. RR+ ) | 
						
							| 101 | 99 100 | ax-mp |  |-  ; 3 2 e. RR+ | 
						
							| 102 |  | rpmulcl |  |-  ( ( ; 3 2 e. RR+ /\ B e. RR+ ) -> ( ; 3 2 x. B ) e. RR+ ) | 
						
							| 103 | 101 3 102 | sylancr |  |-  ( ph -> ( ; 3 2 x. B ) e. RR+ ) | 
						
							| 104 | 67 | simp3d |  |-  ( ph -> ( U - E ) e. RR+ ) | 
						
							| 105 |  | rpexpcl |  |-  ( ( E e. RR+ /\ 2 e. ZZ ) -> ( E ^ 2 ) e. RR+ ) | 
						
							| 106 | 52 90 105 | sylancl |  |-  ( ph -> ( E ^ 2 ) e. RR+ ) | 
						
							| 107 | 50 106 | rpmulcld |  |-  ( ph -> ( L x. ( E ^ 2 ) ) e. RR+ ) | 
						
							| 108 | 104 107 | rpmulcld |  |-  ( ph -> ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) e. RR+ ) | 
						
							| 109 | 103 108 | rpdivcld |  |-  ( ph -> ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) e. RR+ ) | 
						
							| 110 |  | 3rp |  |-  3 e. RR+ | 
						
							| 111 |  | rpmulcl |  |-  ( ( U e. RR+ /\ 3 e. RR+ ) -> ( U x. 3 ) e. RR+ ) | 
						
							| 112 | 7 110 111 | sylancl |  |-  ( ph -> ( U x. 3 ) e. RR+ ) | 
						
							| 113 | 112 13 | rpaddcld |  |-  ( ph -> ( ( U x. 3 ) + C ) e. RR+ ) | 
						
							| 114 | 109 113 | rpmulcld |  |-  ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR+ ) | 
						
							| 115 | 114 | rpred |  |-  ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR ) | 
						
							| 116 | 115 | rpefcld |  |-  ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) e. RR+ ) | 
						
							| 117 | 96 116 | rpaddcld |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) e. RR+ ) | 
						
							| 118 | 87 117 | ltaddrpd |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) < ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) ) | 
						
							| 119 | 118 14 | breqtrrdi |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) < W ) | 
						
							| 120 | 87 17 22 119 23 | ltletrd |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) < Z ) | 
						
							| 121 | 24 | rprege0d |  |-  ( ph -> ( Z e. RR /\ 0 <_ Z ) ) | 
						
							| 122 |  | resqrtth |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) ^ 2 ) = Z ) | 
						
							| 123 | 121 122 | syl |  |-  ( ph -> ( ( sqrt ` Z ) ^ 2 ) = Z ) | 
						
							| 124 | 120 123 | breqtrrd |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) < ( ( sqrt ` Z ) ^ 2 ) ) | 
						
							| 125 | 84 | rprege0d |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) e. RR /\ 0 <_ ( Y + ( 4 / ( L x. E ) ) ) ) ) | 
						
							| 126 | 29 | rprege0d |  |-  ( ph -> ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) | 
						
							| 127 |  | lt2sq |  |-  ( ( ( ( Y + ( 4 / ( L x. E ) ) ) e. RR /\ 0 <_ ( Y + ( 4 / ( L x. E ) ) ) ) /\ ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) -> ( ( Y + ( 4 / ( L x. E ) ) ) < ( sqrt ` Z ) <-> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) < ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 128 | 125 126 127 | syl2anc |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) < ( sqrt ` Z ) <-> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) < ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 129 | 124 128 | mpbird |  |-  ( ph -> ( Y + ( 4 / ( L x. E ) ) ) < ( sqrt ` Z ) ) | 
						
							| 130 | 56 85 30 86 129 | lttrd |  |-  ( ph -> ( 4 / ( L x. E ) ) < ( sqrt ` Z ) ) | 
						
							| 131 | 39 56 30 82 130 | lttrd |  |-  ( ph -> 4 < ( sqrt ` Z ) ) | 
						
							| 132 | 28 39 30 45 131 | lttrd |  |-  ( ph -> _e < ( sqrt ` Z ) ) | 
						
							| 133 | 26 28 30 37 132 | lttrd |  |-  ( ph -> 1 < ( sqrt ` Z ) ) | 
						
							| 134 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 135 | 134 | a1i |  |-  ( ph -> 0 <_ 1 ) | 
						
							| 136 |  | lt2sq |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) -> ( 1 < ( sqrt ` Z ) <-> ( 1 ^ 2 ) < ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 137 | 26 135 126 136 | syl21anc |  |-  ( ph -> ( 1 < ( sqrt ` Z ) <-> ( 1 ^ 2 ) < ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 138 | 133 137 | mpbid |  |-  ( ph -> ( 1 ^ 2 ) < ( ( sqrt ` Z ) ^ 2 ) ) | 
						
							| 139 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 140 | 139 | a1i |  |-  ( ph -> ( 1 ^ 2 ) = 1 ) | 
						
							| 141 | 138 140 123 | 3brtr3d |  |-  ( ph -> 1 < Z ) | 
						
							| 142 | 28 30 132 | ltled |  |-  ( ph -> _e <_ ( sqrt ` Z ) ) | 
						
							| 143 | 22 83 | rerpdivcld |  |-  ( ph -> ( Z / Y ) e. RR ) | 
						
							| 144 | 83 | rpred |  |-  ( ph -> Y e. RR ) | 
						
							| 145 | 144 55 | ltaddrpd |  |-  ( ph -> Y < ( Y + ( 4 / ( L x. E ) ) ) ) | 
						
							| 146 | 144 85 30 145 129 | lttrd |  |-  ( ph -> Y < ( sqrt ` Z ) ) | 
						
							| 147 | 144 30 29 146 | ltmul2dd |  |-  ( ph -> ( ( sqrt ` Z ) x. Y ) < ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) ) | 
						
							| 148 |  | remsqsqrt |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) = Z ) | 
						
							| 149 | 121 148 | syl |  |-  ( ph -> ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) = Z ) | 
						
							| 150 | 147 149 | breqtrd |  |-  ( ph -> ( ( sqrt ` Z ) x. Y ) < Z ) | 
						
							| 151 | 30 22 83 | ltmuldivd |  |-  ( ph -> ( ( ( sqrt ` Z ) x. Y ) < Z <-> ( sqrt ` Z ) < ( Z / Y ) ) ) | 
						
							| 152 | 150 151 | mpbid |  |-  ( ph -> ( sqrt ` Z ) < ( Z / Y ) ) | 
						
							| 153 | 30 143 152 | ltled |  |-  ( ph -> ( sqrt ` Z ) <_ ( Z / Y ) ) | 
						
							| 154 | 141 142 153 | 3jca |  |-  ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) | 
						
							| 155 | 56 30 130 | ltled |  |-  ( ph -> ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) ) | 
						
							| 156 | 88 | relogcld |  |-  ( ph -> ( log ` X ) e. RR ) | 
						
							| 157 | 89 | rpred |  |-  ( ph -> K e. RR ) | 
						
							| 158 | 67 | simp2d |  |-  ( ph -> 1 < K ) | 
						
							| 159 | 157 158 | rplogcld |  |-  ( ph -> ( log ` K ) e. RR+ ) | 
						
							| 160 | 156 159 | rerpdivcld |  |-  ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR ) | 
						
							| 161 |  | readdcl |  |-  ( ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 2 e. RR ) -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) e. RR ) | 
						
							| 162 | 160 34 161 | sylancl |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) e. RR ) | 
						
							| 163 | 24 | relogcld |  |-  ( ph -> ( log ` Z ) e. RR ) | 
						
							| 164 | 163 159 | rerpdivcld |  |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR ) | 
						
							| 165 |  | nndivre |  |-  ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR /\ 4 e. NN ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR ) | 
						
							| 166 | 164 46 165 | sylancl |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR ) | 
						
							| 167 | 93 | relogcld |  |-  ( ph -> ( log ` ( X x. ( K ^ 2 ) ) ) e. RR ) | 
						
							| 168 |  | nndivre |  |-  ( ( ( log ` Z ) e. RR /\ 4 e. NN ) -> ( ( log ` Z ) / 4 ) e. RR ) | 
						
							| 169 | 163 46 168 | sylancl |  |-  ( ph -> ( ( log ` Z ) / 4 ) e. RR ) | 
						
							| 170 |  | relogexp |  |-  ( ( ( X x. ( K ^ 2 ) ) e. RR+ /\ 4 e. ZZ ) -> ( log ` ( ( X x. ( K ^ 2 ) ) ^ 4 ) ) = ( 4 x. ( log ` ( X x. ( K ^ 2 ) ) ) ) ) | 
						
							| 171 | 93 94 170 | sylancl |  |-  ( ph -> ( log ` ( ( X x. ( K ^ 2 ) ) ^ 4 ) ) = ( 4 x. ( log ` ( X x. ( K ^ 2 ) ) ) ) ) | 
						
							| 172 | 96 | rpred |  |-  ( ph -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR ) | 
						
							| 173 | 117 | rpred |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) e. RR ) | 
						
							| 174 | 172 116 | ltaddrpd |  |-  ( ph -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) < ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 175 |  | rpexpcl |  |-  ( ( ( Y + ( 4 / ( L x. E ) ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR+ ) | 
						
							| 176 | 84 90 175 | sylancl |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR+ ) | 
						
							| 177 | 173 176 | ltaddrpd |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) < ( ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) + ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) ) ) | 
						
							| 178 | 87 | recnd |  |-  ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. CC ) | 
						
							| 179 | 117 | rpcnd |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) e. CC ) | 
						
							| 180 | 178 179 | addcomd |  |-  ( ph -> ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) = ( ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) + ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) ) ) | 
						
							| 181 | 14 180 | eqtrid |  |-  ( ph -> W = ( ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) + ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) ) ) | 
						
							| 182 | 177 181 | breqtrrd |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) < W ) | 
						
							| 183 | 173 17 22 182 23 | ltletrd |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) < Z ) | 
						
							| 184 | 172 173 22 174 183 | lttrd |  |-  ( ph -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) < Z ) | 
						
							| 185 |  | logltb |  |-  ( ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ /\ Z e. RR+ ) -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) < Z <-> ( log ` ( ( X x. ( K ^ 2 ) ) ^ 4 ) ) < ( log ` Z ) ) ) | 
						
							| 186 | 96 24 185 | syl2anc |  |-  ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) < Z <-> ( log ` ( ( X x. ( K ^ 2 ) ) ^ 4 ) ) < ( log ` Z ) ) ) | 
						
							| 187 | 184 186 | mpbid |  |-  ( ph -> ( log ` ( ( X x. ( K ^ 2 ) ) ^ 4 ) ) < ( log ` Z ) ) | 
						
							| 188 | 171 187 | eqbrtrrd |  |-  ( ph -> ( 4 x. ( log ` ( X x. ( K ^ 2 ) ) ) ) < ( log ` Z ) ) | 
						
							| 189 |  | ltmuldiv2 |  |-  ( ( ( log ` ( X x. ( K ^ 2 ) ) ) e. RR /\ ( log ` Z ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 4 x. ( log ` ( X x. ( K ^ 2 ) ) ) ) < ( log ` Z ) <-> ( log ` ( X x. ( K ^ 2 ) ) ) < ( ( log ` Z ) / 4 ) ) ) | 
						
							| 190 | 167 163 74 189 | syl3anc |  |-  ( ph -> ( ( 4 x. ( log ` ( X x. ( K ^ 2 ) ) ) ) < ( log ` Z ) <-> ( log ` ( X x. ( K ^ 2 ) ) ) < ( ( log ` Z ) / 4 ) ) ) | 
						
							| 191 | 188 190 | mpbid |  |-  ( ph -> ( log ` ( X x. ( K ^ 2 ) ) ) < ( ( log ` Z ) / 4 ) ) | 
						
							| 192 | 167 169 159 191 | ltdiv1dd |  |-  ( ph -> ( ( log ` ( X x. ( K ^ 2 ) ) ) / ( log ` K ) ) < ( ( ( log ` Z ) / 4 ) / ( log ` K ) ) ) | 
						
							| 193 | 88 92 | relogmuld |  |-  ( ph -> ( log ` ( X x. ( K ^ 2 ) ) ) = ( ( log ` X ) + ( log ` ( K ^ 2 ) ) ) ) | 
						
							| 194 |  | relogexp |  |-  ( ( K e. RR+ /\ 2 e. ZZ ) -> ( log ` ( K ^ 2 ) ) = ( 2 x. ( log ` K ) ) ) | 
						
							| 195 | 89 90 194 | sylancl |  |-  ( ph -> ( log ` ( K ^ 2 ) ) = ( 2 x. ( log ` K ) ) ) | 
						
							| 196 | 195 | oveq2d |  |-  ( ph -> ( ( log ` X ) + ( log ` ( K ^ 2 ) ) ) = ( ( log ` X ) + ( 2 x. ( log ` K ) ) ) ) | 
						
							| 197 | 193 196 | eqtrd |  |-  ( ph -> ( log ` ( X x. ( K ^ 2 ) ) ) = ( ( log ` X ) + ( 2 x. ( log ` K ) ) ) ) | 
						
							| 198 | 197 | oveq1d |  |-  ( ph -> ( ( log ` ( X x. ( K ^ 2 ) ) ) / ( log ` K ) ) = ( ( ( log ` X ) + ( 2 x. ( log ` K ) ) ) / ( log ` K ) ) ) | 
						
							| 199 | 156 | recnd |  |-  ( ph -> ( log ` X ) e. CC ) | 
						
							| 200 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 201 | 159 | rpcnd |  |-  ( ph -> ( log ` K ) e. CC ) | 
						
							| 202 | 200 201 | mulcld |  |-  ( ph -> ( 2 x. ( log ` K ) ) e. CC ) | 
						
							| 203 | 159 | rpcnne0d |  |-  ( ph -> ( ( log ` K ) e. CC /\ ( log ` K ) =/= 0 ) ) | 
						
							| 204 |  | divdir |  |-  ( ( ( log ` X ) e. CC /\ ( 2 x. ( log ` K ) ) e. CC /\ ( ( log ` K ) e. CC /\ ( log ` K ) =/= 0 ) ) -> ( ( ( log ` X ) + ( 2 x. ( log ` K ) ) ) / ( log ` K ) ) = ( ( ( log ` X ) / ( log ` K ) ) + ( ( 2 x. ( log ` K ) ) / ( log ` K ) ) ) ) | 
						
							| 205 | 199 202 203 204 | syl3anc |  |-  ( ph -> ( ( ( log ` X ) + ( 2 x. ( log ` K ) ) ) / ( log ` K ) ) = ( ( ( log ` X ) / ( log ` K ) ) + ( ( 2 x. ( log ` K ) ) / ( log ` K ) ) ) ) | 
						
							| 206 | 203 | simprd |  |-  ( ph -> ( log ` K ) =/= 0 ) | 
						
							| 207 | 200 201 206 | divcan4d |  |-  ( ph -> ( ( 2 x. ( log ` K ) ) / ( log ` K ) ) = 2 ) | 
						
							| 208 | 207 | oveq2d |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + ( ( 2 x. ( log ` K ) ) / ( log ` K ) ) ) = ( ( ( log ` X ) / ( log ` K ) ) + 2 ) ) | 
						
							| 209 | 198 205 208 | 3eqtrd |  |-  ( ph -> ( ( log ` ( X x. ( K ^ 2 ) ) ) / ( log ` K ) ) = ( ( ( log ` X ) / ( log ` K ) ) + 2 ) ) | 
						
							| 210 | 163 | recnd |  |-  ( ph -> ( log ` Z ) e. CC ) | 
						
							| 211 |  | rpcnne0 |  |-  ( 4 e. RR+ -> ( 4 e. CC /\ 4 =/= 0 ) ) | 
						
							| 212 | 48 211 | mp1i |  |-  ( ph -> ( 4 e. CC /\ 4 =/= 0 ) ) | 
						
							| 213 |  | divdiv32 |  |-  ( ( ( log ` Z ) e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) /\ ( ( log ` K ) e. CC /\ ( log ` K ) =/= 0 ) ) -> ( ( ( log ` Z ) / 4 ) / ( log ` K ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 214 | 210 212 203 213 | syl3anc |  |-  ( ph -> ( ( ( log ` Z ) / 4 ) / ( log ` K ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 215 | 192 209 214 | 3brtr3d |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) < ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 216 | 162 166 215 | ltled |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 217 | 113 | rpred |  |-  ( ph -> ( ( U x. 3 ) + C ) e. RR ) | 
						
							| 218 | 108 103 | rpdivcld |  |-  ( ph -> ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) e. RR+ ) | 
						
							| 219 | 218 | rpred |  |-  ( ph -> ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) e. RR ) | 
						
							| 220 | 219 163 | remulcld |  |-  ( ph -> ( ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) x. ( log ` Z ) ) e. RR ) | 
						
							| 221 | 113 | rpcnd |  |-  ( ph -> ( ( U x. 3 ) + C ) e. CC ) | 
						
							| 222 | 108 | rpcnne0d |  |-  ( ph -> ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) e. CC /\ ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 223 | 103 | rpcnne0d |  |-  ( ph -> ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) | 
						
							| 224 |  | divdiv2 |  |-  ( ( ( ( U x. 3 ) + C ) e. CC /\ ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) e. CC /\ ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) =/= 0 ) /\ ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) -> ( ( ( U x. 3 ) + C ) / ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) ) = ( ( ( ( U x. 3 ) + C ) x. ( ; 3 2 x. B ) ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) ) | 
						
							| 225 | 221 222 223 224 | syl3anc |  |-  ( ph -> ( ( ( U x. 3 ) + C ) / ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) ) = ( ( ( ( U x. 3 ) + C ) x. ( ; 3 2 x. B ) ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) ) | 
						
							| 226 | 103 | rpcnd |  |-  ( ph -> ( ; 3 2 x. B ) e. CC ) | 
						
							| 227 | 221 226 | mulcomd |  |-  ( ph -> ( ( ( U x. 3 ) + C ) x. ( ; 3 2 x. B ) ) = ( ( ; 3 2 x. B ) x. ( ( U x. 3 ) + C ) ) ) | 
						
							| 228 | 227 | oveq1d |  |-  ( ph -> ( ( ( ( U x. 3 ) + C ) x. ( ; 3 2 x. B ) ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) = ( ( ( ; 3 2 x. B ) x. ( ( U x. 3 ) + C ) ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) ) | 
						
							| 229 |  | div23 |  |-  ( ( ( ; 3 2 x. B ) e. CC /\ ( ( U x. 3 ) + C ) e. CC /\ ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) e. CC /\ ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) =/= 0 ) ) -> ( ( ( ; 3 2 x. B ) x. ( ( U x. 3 ) + C ) ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) = ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) | 
						
							| 230 | 226 221 222 229 | syl3anc |  |-  ( ph -> ( ( ( ; 3 2 x. B ) x. ( ( U x. 3 ) + C ) ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) = ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) | 
						
							| 231 | 225 228 230 | 3eqtrd |  |-  ( ph -> ( ( ( U x. 3 ) + C ) / ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) ) = ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) | 
						
							| 232 | 115 | reefcld |  |-  ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) e. RR ) | 
						
							| 233 | 232 96 | ltaddrp2d |  |-  ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) < ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 234 | 232 173 22 233 183 | lttrd |  |-  ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) < Z ) | 
						
							| 235 | 24 | reeflogd |  |-  ( ph -> ( exp ` ( log ` Z ) ) = Z ) | 
						
							| 236 | 234 235 | breqtrrd |  |-  ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) < ( exp ` ( log ` Z ) ) ) | 
						
							| 237 |  | eflt |  |-  ( ( ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR /\ ( log ` Z ) e. RR ) -> ( ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) < ( log ` Z ) <-> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) < ( exp ` ( log ` Z ) ) ) ) | 
						
							| 238 | 115 163 237 | syl2anc |  |-  ( ph -> ( ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) < ( log ` Z ) <-> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) < ( exp ` ( log ` Z ) ) ) ) | 
						
							| 239 | 236 238 | mpbird |  |-  ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) < ( log ` Z ) ) | 
						
							| 240 | 231 239 | eqbrtrd |  |-  ( ph -> ( ( ( U x. 3 ) + C ) / ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) ) < ( log ` Z ) ) | 
						
							| 241 | 217 163 218 | ltdivmuld |  |-  ( ph -> ( ( ( ( U x. 3 ) + C ) / ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) ) < ( log ` Z ) <-> ( ( U x. 3 ) + C ) < ( ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) x. ( log ` Z ) ) ) ) | 
						
							| 242 | 240 241 | mpbid |  |-  ( ph -> ( ( U x. 3 ) + C ) < ( ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) x. ( log ` Z ) ) ) | 
						
							| 243 | 217 220 242 | ltled |  |-  ( ph -> ( ( U x. 3 ) + C ) <_ ( ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) x. ( log ` Z ) ) ) | 
						
							| 244 | 104 | rpcnd |  |-  ( ph -> ( U - E ) e. CC ) | 
						
							| 245 | 107 | rpcnd |  |-  ( ph -> ( L x. ( E ^ 2 ) ) e. CC ) | 
						
							| 246 |  | divass |  |-  ( ( ( U - E ) e. CC /\ ( L x. ( E ^ 2 ) ) e. CC /\ ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) -> ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) = ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) | 
						
							| 247 | 244 245 223 246 | syl3anc |  |-  ( ph -> ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) = ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) | 
						
							| 248 | 247 | oveq1d |  |-  ( ph -> ( ( ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) / ( ; 3 2 x. B ) ) x. ( log ` Z ) ) = ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) | 
						
							| 249 | 243 248 | breqtrd |  |-  ( ph -> ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) | 
						
							| 250 | 155 216 249 | 3jca |  |-  ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 251 | 24 154 250 | 3jca |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |