Metamath Proof Explorer


Theorem pntlemg

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, M is j^* and N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) )
pntlem1.a
|- ( ph -> A e. RR+ )
pntlem1.b
|- ( ph -> B e. RR+ )
pntlem1.l
|- ( ph -> L e. ( 0 (,) 1 ) )
pntlem1.d
|- D = ( A + 1 )
pntlem1.f
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) )
pntlem1.u
|- ( ph -> U e. RR+ )
pntlem1.u2
|- ( ph -> U <_ A )
pntlem1.e
|- E = ( U / D )
pntlem1.k
|- K = ( exp ` ( B / E ) )
pntlem1.y
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) )
pntlem1.x
|- ( ph -> ( X e. RR+ /\ Y < X ) )
pntlem1.c
|- ( ph -> C e. RR+ )
pntlem1.w
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) )
pntlem1.z
|- ( ph -> Z e. ( W [,) +oo ) )
pntlem1.m
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 )
pntlem1.n
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
Assertion pntlemg
|- ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) )

Proof

Step Hyp Ref Expression
1 pntlem1.r
 |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) )
2 pntlem1.a
 |-  ( ph -> A e. RR+ )
3 pntlem1.b
 |-  ( ph -> B e. RR+ )
4 pntlem1.l
 |-  ( ph -> L e. ( 0 (,) 1 ) )
5 pntlem1.d
 |-  D = ( A + 1 )
6 pntlem1.f
 |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) )
7 pntlem1.u
 |-  ( ph -> U e. RR+ )
8 pntlem1.u2
 |-  ( ph -> U <_ A )
9 pntlem1.e
 |-  E = ( U / D )
10 pntlem1.k
 |-  K = ( exp ` ( B / E ) )
11 pntlem1.y
 |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) )
12 pntlem1.x
 |-  ( ph -> ( X e. RR+ /\ Y < X ) )
13 pntlem1.c
 |-  ( ph -> C e. RR+ )
14 pntlem1.w
 |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) )
15 pntlem1.z
 |-  ( ph -> Z e. ( W [,) +oo ) )
16 pntlem1.m
 |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 )
17 pntlem1.n
 |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
18 12 simpld
 |-  ( ph -> X e. RR+ )
19 18 rpred
 |-  ( ph -> X e. RR )
20 1red
 |-  ( ph -> 1 e. RR )
21 11 simpld
 |-  ( ph -> Y e. RR+ )
22 21 rpred
 |-  ( ph -> Y e. RR )
23 11 simprd
 |-  ( ph -> 1 <_ Y )
24 12 simprd
 |-  ( ph -> Y < X )
25 20 22 19 23 24 lelttrd
 |-  ( ph -> 1 < X )
26 19 25 rplogcld
 |-  ( ph -> ( log ` X ) e. RR+ )
27 1 2 3 4 5 6 7 8 9 10 pntlemc
 |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) )
28 27 simp2d
 |-  ( ph -> K e. RR+ )
29 28 rpred
 |-  ( ph -> K e. RR )
30 27 simp3d
 |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) )
31 30 simp2d
 |-  ( ph -> 1 < K )
32 29 31 rplogcld
 |-  ( ph -> ( log ` K ) e. RR+ )
33 26 32 rpdivcld
 |-  ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR+ )
34 33 rprege0d
 |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 0 <_ ( ( log ` X ) / ( log ` K ) ) ) )
35 flge0nn0
 |-  ( ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 0 <_ ( ( log ` X ) / ( log ` K ) ) ) -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. NN0 )
36 nn0p1nn
 |-  ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. NN0 -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) e. NN )
37 34 35 36 3syl
 |-  ( ph -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) e. NN )
38 16 37 eqeltrid
 |-  ( ph -> M e. NN )
39 38 nnzd
 |-  ( ph -> M e. ZZ )
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb
 |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) )
41 40 simp1d
 |-  ( ph -> Z e. RR+ )
42 41 relogcld
 |-  ( ph -> ( log ` Z ) e. RR )
43 42 32 rerpdivcld
 |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR )
44 43 rehalfcld
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR )
45 44 flcld
 |-  ( ph -> ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) e. ZZ )
46 17 45 eqeltrid
 |-  ( ph -> N e. ZZ )
47 0red
 |-  ( ph -> 0 e. RR )
48 4nn
 |-  4 e. NN
49 nndivre
 |-  ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR /\ 4 e. NN ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR )
50 43 48 49 sylancl
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR )
51 46 zred
 |-  ( ph -> N e. RR )
52 38 nnred
 |-  ( ph -> M e. RR )
53 51 52 resubcld
 |-  ( ph -> ( N - M ) e. RR )
54 41 rpred
 |-  ( ph -> Z e. RR )
55 40 simp2d
 |-  ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) )
56 55 simp1d
 |-  ( ph -> 1 < Z )
57 54 56 rplogcld
 |-  ( ph -> ( log ` Z ) e. RR+ )
58 57 32 rpdivcld
 |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR+ )
59 4re
 |-  4 e. RR
60 4pos
 |-  0 < 4
61 59 60 elrpii
 |-  4 e. RR+
62 rpdivcl
 |-  ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR+ /\ 4 e. RR+ ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR+ )
63 58 61 62 sylancl
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR+ )
64 63 rpge0d
 |-  ( ph -> 0 <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) )
65 50 recnd
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. CC )
66 38 nncnd
 |-  ( ph -> M e. CC )
67 1cnd
 |-  ( ph -> 1 e. CC )
68 65 66 67 addassd
 |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) )
69 52 20 readdcld
 |-  ( ph -> ( M + 1 ) e. RR )
70 50 69 readdcld
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) e. RR )
71 peano2re
 |-  ( N e. RR -> ( N + 1 ) e. RR )
72 51 71 syl
 |-  ( ph -> ( N + 1 ) e. RR )
73 33 rpred
 |-  ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR )
74 2re
 |-  2 e. RR
75 74 a1i
 |-  ( ph -> 2 e. RR )
76 73 75 readdcld
 |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) e. RR )
77 reflcl
 |-  ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. RR )
78 73 77 syl
 |-  ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. RR )
79 78 recnd
 |-  ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. CC )
80 79 67 67 addassd
 |-  ( ph -> ( ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + ( 1 + 1 ) ) )
81 16 oveq1i
 |-  ( M + 1 ) = ( ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) + 1 )
82 df-2
 |-  2 = ( 1 + 1 )
83 82 oveq2i
 |-  ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + ( 1 + 1 ) )
84 80 81 83 3eqtr4g
 |-  ( ph -> ( M + 1 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) )
85 flle
 |-  ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) <_ ( ( log ` X ) / ( log ` K ) ) )
86 73 85 syl
 |-  ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) <_ ( ( log ` X ) / ( log ` K ) ) )
87 78 73 75 86 leadd1dd
 |-  ( ph -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) <_ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) )
88 84 87 eqbrtrd
 |-  ( ph -> ( M + 1 ) <_ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) )
89 40 simp3d
 |-  ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) )
90 89 simp2d
 |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) )
91 69 76 50 88 90 letrd
 |-  ( ph -> ( M + 1 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) )
92 69 50 50 91 leadd2dd
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) )
93 43 recnd
 |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. CC )
94 2cnd
 |-  ( ph -> 2 e. CC )
95 2ne0
 |-  2 =/= 0
96 95 a1i
 |-  ( ph -> 2 =/= 0 )
97 93 94 94 96 96 divdiv1d
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) = ( ( ( log ` Z ) / ( log ` K ) ) / ( 2 x. 2 ) ) )
98 2t2e4
 |-  ( 2 x. 2 ) = 4
99 98 oveq2i
 |-  ( ( ( log ` Z ) / ( log ` K ) ) / ( 2 x. 2 ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 )
100 97 99 eqtrdi
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) )
101 100 oveq2d
 |-  ( ph -> ( 2 x. ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) ) = ( 2 x. ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) )
102 44 recnd
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. CC )
103 102 94 96 divcan2d
 |-  ( ph -> ( 2 x. ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
104 65 2timesd
 |-  ( ph -> ( 2 x. ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) )
105 101 103 104 3eqtr3d
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) )
106 92 105 breqtrrd
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
107 fllep1
 |-  ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) )
108 44 107 syl
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) )
109 17 oveq1i
 |-  ( N + 1 ) = ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 )
110 108 109 breqtrrdi
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( N + 1 ) )
111 70 44 72 106 110 letrd
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( N + 1 ) )
112 68 111 eqbrtrd
 |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) <_ ( N + 1 ) )
113 50 52 readdcld
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) e. RR )
114 113 51 20 leadd1d
 |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) <_ ( N + 1 ) ) )
115 112 114 mpbird
 |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N )
116 leaddsub
 |-  ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR /\ M e. RR /\ N e. RR ) -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) )
117 50 52 51 116 syl3anc
 |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) )
118 115 117 mpbid
 |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) )
119 47 50 53 64 118 letrd
 |-  ( ph -> 0 <_ ( N - M ) )
120 51 52 subge0d
 |-  ( ph -> ( 0 <_ ( N - M ) <-> M <_ N ) )
121 119 120 mpbid
 |-  ( ph -> M <_ N )
122 eluz2
 |-  ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) )
123 39 46 121 122 syl3anbrc
 |-  ( ph -> N e. ( ZZ>= ` M ) )
124 38 123 118 3jca
 |-  ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) )