Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
15 |
|
pntlem1.z |
|- ( ph -> Z e. ( W [,) +oo ) ) |
16 |
|
pntlem1.m |
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) |
17 |
|
pntlem1.n |
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
18 |
12
|
simpld |
|- ( ph -> X e. RR+ ) |
19 |
18
|
rpred |
|- ( ph -> X e. RR ) |
20 |
|
1red |
|- ( ph -> 1 e. RR ) |
21 |
11
|
simpld |
|- ( ph -> Y e. RR+ ) |
22 |
21
|
rpred |
|- ( ph -> Y e. RR ) |
23 |
11
|
simprd |
|- ( ph -> 1 <_ Y ) |
24 |
12
|
simprd |
|- ( ph -> Y < X ) |
25 |
20 22 19 23 24
|
lelttrd |
|- ( ph -> 1 < X ) |
26 |
19 25
|
rplogcld |
|- ( ph -> ( log ` X ) e. RR+ ) |
27 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
28 |
27
|
simp2d |
|- ( ph -> K e. RR+ ) |
29 |
28
|
rpred |
|- ( ph -> K e. RR ) |
30 |
27
|
simp3d |
|- ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) |
31 |
30
|
simp2d |
|- ( ph -> 1 < K ) |
32 |
29 31
|
rplogcld |
|- ( ph -> ( log ` K ) e. RR+ ) |
33 |
26 32
|
rpdivcld |
|- ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR+ ) |
34 |
33
|
rprege0d |
|- ( ph -> ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 0 <_ ( ( log ` X ) / ( log ` K ) ) ) ) |
35 |
|
flge0nn0 |
|- ( ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 0 <_ ( ( log ` X ) / ( log ` K ) ) ) -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. NN0 ) |
36 |
|
nn0p1nn |
|- ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. NN0 -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) e. NN ) |
37 |
34 35 36
|
3syl |
|- ( ph -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) e. NN ) |
38 |
16 37
|
eqeltrid |
|- ( ph -> M e. NN ) |
39 |
38
|
nnzd |
|- ( ph -> M e. ZZ ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|- ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
41 |
40
|
simp1d |
|- ( ph -> Z e. RR+ ) |
42 |
41
|
relogcld |
|- ( ph -> ( log ` Z ) e. RR ) |
43 |
42 32
|
rerpdivcld |
|- ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR ) |
44 |
43
|
rehalfcld |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR ) |
45 |
44
|
flcld |
|- ( ph -> ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) e. ZZ ) |
46 |
17 45
|
eqeltrid |
|- ( ph -> N e. ZZ ) |
47 |
|
0red |
|- ( ph -> 0 e. RR ) |
48 |
|
4nn |
|- 4 e. NN |
49 |
|
nndivre |
|- ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR /\ 4 e. NN ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR ) |
50 |
43 48 49
|
sylancl |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR ) |
51 |
46
|
zred |
|- ( ph -> N e. RR ) |
52 |
38
|
nnred |
|- ( ph -> M e. RR ) |
53 |
51 52
|
resubcld |
|- ( ph -> ( N - M ) e. RR ) |
54 |
41
|
rpred |
|- ( ph -> Z e. RR ) |
55 |
40
|
simp2d |
|- ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) |
56 |
55
|
simp1d |
|- ( ph -> 1 < Z ) |
57 |
54 56
|
rplogcld |
|- ( ph -> ( log ` Z ) e. RR+ ) |
58 |
57 32
|
rpdivcld |
|- ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR+ ) |
59 |
|
4re |
|- 4 e. RR |
60 |
|
4pos |
|- 0 < 4 |
61 |
59 60
|
elrpii |
|- 4 e. RR+ |
62 |
|
rpdivcl |
|- ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR+ /\ 4 e. RR+ ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR+ ) |
63 |
58 61 62
|
sylancl |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR+ ) |
64 |
63
|
rpge0d |
|- ( ph -> 0 <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) |
65 |
50
|
recnd |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. CC ) |
66 |
38
|
nncnd |
|- ( ph -> M e. CC ) |
67 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
68 |
65 66 67
|
addassd |
|- ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) ) |
69 |
52 20
|
readdcld |
|- ( ph -> ( M + 1 ) e. RR ) |
70 |
50 69
|
readdcld |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) e. RR ) |
71 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
72 |
51 71
|
syl |
|- ( ph -> ( N + 1 ) e. RR ) |
73 |
33
|
rpred |
|- ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR ) |
74 |
|
2re |
|- 2 e. RR |
75 |
74
|
a1i |
|- ( ph -> 2 e. RR ) |
76 |
73 75
|
readdcld |
|- ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) e. RR ) |
77 |
|
reflcl |
|- ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. RR ) |
78 |
73 77
|
syl |
|- ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. RR ) |
79 |
78
|
recnd |
|- ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. CC ) |
80 |
79 67 67
|
addassd |
|- ( ph -> ( ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + ( 1 + 1 ) ) ) |
81 |
16
|
oveq1i |
|- ( M + 1 ) = ( ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) + 1 ) |
82 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
83 |
82
|
oveq2i |
|- ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + ( 1 + 1 ) ) |
84 |
80 81 83
|
3eqtr4g |
|- ( ph -> ( M + 1 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) ) |
85 |
|
flle |
|- ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) <_ ( ( log ` X ) / ( log ` K ) ) ) |
86 |
73 85
|
syl |
|- ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) <_ ( ( log ` X ) / ( log ` K ) ) ) |
87 |
78 73 75 86
|
leadd1dd |
|- ( ph -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) <_ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) ) |
88 |
84 87
|
eqbrtrd |
|- ( ph -> ( M + 1 ) <_ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) ) |
89 |
40
|
simp3d |
|- ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
90 |
89
|
simp2d |
|- ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) |
91 |
69 76 50 88 90
|
letrd |
|- ( ph -> ( M + 1 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) |
92 |
69 50 50 91
|
leadd2dd |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) |
93 |
43
|
recnd |
|- ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. CC ) |
94 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
95 |
|
2ne0 |
|- 2 =/= 0 |
96 |
95
|
a1i |
|- ( ph -> 2 =/= 0 ) |
97 |
93 94 94 96 96
|
divdiv1d |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) = ( ( ( log ` Z ) / ( log ` K ) ) / ( 2 x. 2 ) ) ) |
98 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
99 |
98
|
oveq2i |
|- ( ( ( log ` Z ) / ( log ` K ) ) / ( 2 x. 2 ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) |
100 |
97 99
|
eqtrdi |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) |
101 |
100
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) ) = ( 2 x. ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) |
102 |
44
|
recnd |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. CC ) |
103 |
102 94 96
|
divcan2d |
|- ( ph -> ( 2 x. ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
104 |
65
|
2timesd |
|- ( ph -> ( 2 x. ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) |
105 |
101 103 104
|
3eqtr3d |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) |
106 |
92 105
|
breqtrrd |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
107 |
|
fllep1 |
|- ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) ) |
108 |
44 107
|
syl |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) ) |
109 |
17
|
oveq1i |
|- ( N + 1 ) = ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) |
110 |
108 109
|
breqtrrdi |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( N + 1 ) ) |
111 |
70 44 72 106 110
|
letrd |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( N + 1 ) ) |
112 |
68 111
|
eqbrtrd |
|- ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) <_ ( N + 1 ) ) |
113 |
50 52
|
readdcld |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) e. RR ) |
114 |
113 51 20
|
leadd1d |
|- ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) <_ ( N + 1 ) ) ) |
115 |
112 114
|
mpbird |
|- ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N ) |
116 |
|
leaddsub |
|- ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR /\ M e. RR /\ N e. RR ) -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |
117 |
50 52 51 116
|
syl3anc |
|- ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |
118 |
115 117
|
mpbid |
|- ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) |
119 |
47 50 53 64 118
|
letrd |
|- ( ph -> 0 <_ ( N - M ) ) |
120 |
51 52
|
subge0d |
|- ( ph -> ( 0 <_ ( N - M ) <-> M <_ N ) ) |
121 |
119 120
|
mpbid |
|- ( ph -> M <_ N ) |
122 |
|
eluz2 |
|- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
123 |
39 46 121 122
|
syl3anbrc |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
124 |
38 123 118
|
3jca |
|- ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |