| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 | 12 | simpld |  |-  ( ph -> X e. RR+ ) | 
						
							| 19 | 18 | rpred |  |-  ( ph -> X e. RR ) | 
						
							| 20 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 21 | 11 | simpld |  |-  ( ph -> Y e. RR+ ) | 
						
							| 22 | 21 | rpred |  |-  ( ph -> Y e. RR ) | 
						
							| 23 | 11 | simprd |  |-  ( ph -> 1 <_ Y ) | 
						
							| 24 | 12 | simprd |  |-  ( ph -> Y < X ) | 
						
							| 25 | 20 22 19 23 24 | lelttrd |  |-  ( ph -> 1 < X ) | 
						
							| 26 | 19 25 | rplogcld |  |-  ( ph -> ( log ` X ) e. RR+ ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 28 | 27 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 29 | 28 | rpred |  |-  ( ph -> K e. RR ) | 
						
							| 30 | 27 | simp3d |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 31 | 30 | simp2d |  |-  ( ph -> 1 < K ) | 
						
							| 32 | 29 31 | rplogcld |  |-  ( ph -> ( log ` K ) e. RR+ ) | 
						
							| 33 | 26 32 | rpdivcld |  |-  ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR+ ) | 
						
							| 34 | 33 | rprege0d |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 0 <_ ( ( log ` X ) / ( log ` K ) ) ) ) | 
						
							| 35 |  | flge0nn0 |  |-  ( ( ( ( log ` X ) / ( log ` K ) ) e. RR /\ 0 <_ ( ( log ` X ) / ( log ` K ) ) ) -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. NN0 ) | 
						
							| 36 |  | nn0p1nn |  |-  ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. NN0 -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) e. NN ) | 
						
							| 37 | 34 35 36 | 3syl |  |-  ( ph -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) e. NN ) | 
						
							| 38 | 16 37 | eqeltrid |  |-  ( ph -> M e. NN ) | 
						
							| 39 | 38 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 41 | 40 | simp1d |  |-  ( ph -> Z e. RR+ ) | 
						
							| 42 | 41 | relogcld |  |-  ( ph -> ( log ` Z ) e. RR ) | 
						
							| 43 | 42 32 | rerpdivcld |  |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR ) | 
						
							| 44 | 43 | rehalfcld |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR ) | 
						
							| 45 | 44 | flcld |  |-  ( ph -> ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) e. ZZ ) | 
						
							| 46 | 17 45 | eqeltrid |  |-  ( ph -> N e. ZZ ) | 
						
							| 47 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 48 |  | 4nn |  |-  4 e. NN | 
						
							| 49 |  | nndivre |  |-  ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR /\ 4 e. NN ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR ) | 
						
							| 50 | 43 48 49 | sylancl |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR ) | 
						
							| 51 | 46 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 52 | 38 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 53 | 51 52 | resubcld |  |-  ( ph -> ( N - M ) e. RR ) | 
						
							| 54 | 41 | rpred |  |-  ( ph -> Z e. RR ) | 
						
							| 55 | 40 | simp2d |  |-  ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) | 
						
							| 56 | 55 | simp1d |  |-  ( ph -> 1 < Z ) | 
						
							| 57 | 54 56 | rplogcld |  |-  ( ph -> ( log ` Z ) e. RR+ ) | 
						
							| 58 | 57 32 | rpdivcld |  |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. RR+ ) | 
						
							| 59 |  | 4re |  |-  4 e. RR | 
						
							| 60 |  | 4pos |  |-  0 < 4 | 
						
							| 61 | 59 60 | elrpii |  |-  4 e. RR+ | 
						
							| 62 |  | rpdivcl |  |-  ( ( ( ( log ` Z ) / ( log ` K ) ) e. RR+ /\ 4 e. RR+ ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR+ ) | 
						
							| 63 | 58 61 62 | sylancl |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR+ ) | 
						
							| 64 | 63 | rpge0d |  |-  ( ph -> 0 <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 65 | 50 | recnd |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. CC ) | 
						
							| 66 | 38 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 67 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 68 | 65 66 67 | addassd |  |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) ) | 
						
							| 69 | 52 20 | readdcld |  |-  ( ph -> ( M + 1 ) e. RR ) | 
						
							| 70 | 50 69 | readdcld |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) e. RR ) | 
						
							| 71 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 72 | 51 71 | syl |  |-  ( ph -> ( N + 1 ) e. RR ) | 
						
							| 73 | 33 | rpred |  |-  ( ph -> ( ( log ` X ) / ( log ` K ) ) e. RR ) | 
						
							| 74 |  | 2re |  |-  2 e. RR | 
						
							| 75 | 74 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 76 | 73 75 | readdcld |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) e. RR ) | 
						
							| 77 |  | reflcl |  |-  ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. RR ) | 
						
							| 78 | 73 77 | syl |  |-  ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. RR ) | 
						
							| 79 | 78 | recnd |  |-  ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) e. CC ) | 
						
							| 80 | 79 67 67 | addassd |  |-  ( ph -> ( ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + ( 1 + 1 ) ) ) | 
						
							| 81 | 16 | oveq1i |  |-  ( M + 1 ) = ( ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) + 1 ) | 
						
							| 82 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 83 | 82 | oveq2i |  |-  ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + ( 1 + 1 ) ) | 
						
							| 84 | 80 81 83 | 3eqtr4g |  |-  ( ph -> ( M + 1 ) = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) ) | 
						
							| 85 |  | flle |  |-  ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) <_ ( ( log ` X ) / ( log ` K ) ) ) | 
						
							| 86 | 73 85 | syl |  |-  ( ph -> ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) <_ ( ( log ` X ) / ( log ` K ) ) ) | 
						
							| 87 | 78 73 75 86 | leadd1dd |  |-  ( ph -> ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 2 ) <_ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) ) | 
						
							| 88 | 84 87 | eqbrtrd |  |-  ( ph -> ( M + 1 ) <_ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) ) | 
						
							| 89 | 40 | simp3d |  |-  ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 90 | 89 | simp2d |  |-  ( ph -> ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 91 | 69 76 50 88 90 | letrd |  |-  ( ph -> ( M + 1 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 92 | 69 50 50 91 | leadd2dd |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) | 
						
							| 93 | 43 | recnd |  |-  ( ph -> ( ( log ` Z ) / ( log ` K ) ) e. CC ) | 
						
							| 94 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 95 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 96 | 95 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 97 | 93 94 94 96 96 | divdiv1d |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) = ( ( ( log ` Z ) / ( log ` K ) ) / ( 2 x. 2 ) ) ) | 
						
							| 98 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 99 | 98 | oveq2i |  |-  ( ( ( log ` Z ) / ( log ` K ) ) / ( 2 x. 2 ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) | 
						
							| 100 | 97 99 | eqtrdi |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) = ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) | 
						
							| 101 | 100 | oveq2d |  |-  ( ph -> ( 2 x. ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) ) = ( 2 x. ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) | 
						
							| 102 | 44 | recnd |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. CC ) | 
						
							| 103 | 102 94 96 | divcan2d |  |-  ( ph -> ( 2 x. ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) / 2 ) ) = ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 104 | 65 | 2timesd |  |-  ( ph -> ( 2 x. ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) | 
						
							| 105 | 101 103 104 | 3eqtr3d |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) = ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) ) ) | 
						
							| 106 | 92 105 | breqtrrd |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 107 |  | fllep1 |  |-  ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) ) | 
						
							| 108 | 44 107 | syl |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) ) | 
						
							| 109 | 17 | oveq1i |  |-  ( N + 1 ) = ( ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) + 1 ) | 
						
							| 110 | 108 109 | breqtrrdi |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <_ ( N + 1 ) ) | 
						
							| 111 | 70 44 72 106 110 | letrd |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + ( M + 1 ) ) <_ ( N + 1 ) ) | 
						
							| 112 | 68 111 | eqbrtrd |  |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) <_ ( N + 1 ) ) | 
						
							| 113 | 50 52 | readdcld |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) e. RR ) | 
						
							| 114 | 113 51 20 | leadd1d |  |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) + 1 ) <_ ( N + 1 ) ) ) | 
						
							| 115 | 112 114 | mpbird |  |-  ( ph -> ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N ) | 
						
							| 116 |  | leaddsub |  |-  ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) e. RR /\ M e. RR /\ N e. RR ) -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) | 
						
							| 117 | 50 52 51 116 | syl3anc |  |-  ( ph -> ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) + M ) <_ N <-> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) | 
						
							| 118 | 115 117 | mpbid |  |-  ( ph -> ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) | 
						
							| 119 | 47 50 53 64 118 | letrd |  |-  ( ph -> 0 <_ ( N - M ) ) | 
						
							| 120 | 51 52 | subge0d |  |-  ( ph -> ( 0 <_ ( N - M ) <-> M <_ N ) ) | 
						
							| 121 | 119 120 | mpbid |  |-  ( ph -> M <_ N ) | 
						
							| 122 |  | eluz2 |  |-  ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) | 
						
							| 123 | 39 46 121 122 | syl3anbrc |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 124 | 38 123 118 | 3jca |  |-  ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |