Metamath Proof Explorer


Theorem pntlemg

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, M is j^* and N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
pntlem1.m M = log X log K + 1
pntlem1.n N = log Z log K 2
Assertion pntlemg φ M N M log Z log K 4 N M

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 pntlem1.m M = log X log K + 1
17 pntlem1.n N = log Z log K 2
18 12 simpld φ X +
19 18 rpred φ X
20 1red φ 1
21 11 simpld φ Y +
22 21 rpred φ Y
23 11 simprd φ 1 Y
24 12 simprd φ Y < X
25 20 22 19 23 24 lelttrd φ 1 < X
26 19 25 rplogcld φ log X +
27 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
28 27 simp2d φ K +
29 28 rpred φ K
30 27 simp3d φ E 0 1 1 < K U E +
31 30 simp2d φ 1 < K
32 29 31 rplogcld φ log K +
33 26 32 rpdivcld φ log X log K +
34 33 rprege0d φ log X log K 0 log X log K
35 flge0nn0 log X log K 0 log X log K log X log K 0
36 nn0p1nn log X log K 0 log X log K + 1
37 34 35 36 3syl φ log X log K + 1
38 16 37 eqeltrid φ M
39 38 nnzd φ M
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
41 40 simp1d φ Z +
42 41 relogcld φ log Z
43 42 32 rerpdivcld φ log Z log K
44 43 rehalfcld φ log Z log K 2
45 44 flcld φ log Z log K 2
46 17 45 eqeltrid φ N
47 0red φ 0
48 4nn 4
49 nndivre log Z log K 4 log Z log K 4
50 43 48 49 sylancl φ log Z log K 4
51 46 zred φ N
52 38 nnred φ M
53 51 52 resubcld φ N M
54 41 rpred φ Z
55 40 simp2d φ 1 < Z e Z Z Z Y
56 55 simp1d φ 1 < Z
57 54 56 rplogcld φ log Z +
58 57 32 rpdivcld φ log Z log K +
59 4re 4
60 4pos 0 < 4
61 59 60 elrpii 4 +
62 rpdivcl log Z log K + 4 + log Z log K 4 +
63 58 61 62 sylancl φ log Z log K 4 +
64 63 rpge0d φ 0 log Z log K 4
65 50 recnd φ log Z log K 4
66 38 nncnd φ M
67 1cnd φ 1
68 65 66 67 addassd φ log Z log K 4 + M + 1 = log Z log K 4 + M + 1
69 52 20 readdcld φ M + 1
70 50 69 readdcld φ log Z log K 4 + M + 1
71 peano2re N N + 1
72 51 71 syl φ N + 1
73 33 rpred φ log X log K
74 2re 2
75 74 a1i φ 2
76 73 75 readdcld φ log X log K + 2
77 reflcl log X log K log X log K
78 73 77 syl φ log X log K
79 78 recnd φ log X log K
80 79 67 67 addassd φ log X log K + 1 + 1 = log X log K + 1 + 1
81 16 oveq1i M + 1 = log X log K + 1 + 1
82 df-2 2 = 1 + 1
83 82 oveq2i log X log K + 2 = log X log K + 1 + 1
84 80 81 83 3eqtr4g φ M + 1 = log X log K + 2
85 flle log X log K log X log K log X log K
86 73 85 syl φ log X log K log X log K
87 78 73 75 86 leadd1dd φ log X log K + 2 log X log K + 2
88 84 87 eqbrtrd φ M + 1 log X log K + 2
89 40 simp3d φ 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
90 89 simp2d φ log X log K + 2 log Z log K 4
91 69 76 50 88 90 letrd φ M + 1 log Z log K 4
92 69 50 50 91 leadd2dd φ log Z log K 4 + M + 1 log Z log K 4 + log Z log K 4
93 43 recnd φ log Z log K
94 2cnd φ 2
95 2ne0 2 0
96 95 a1i φ 2 0
97 93 94 94 96 96 divdiv1d φ log Z log K 2 2 = log Z log K 2 2
98 2t2e4 2 2 = 4
99 98 oveq2i log Z log K 2 2 = log Z log K 4
100 97 99 eqtrdi φ log Z log K 2 2 = log Z log K 4
101 100 oveq2d φ 2 log Z log K 2 2 = 2 log Z log K 4
102 44 recnd φ log Z log K 2
103 102 94 96 divcan2d φ 2 log Z log K 2 2 = log Z log K 2
104 65 2timesd φ 2 log Z log K 4 = log Z log K 4 + log Z log K 4
105 101 103 104 3eqtr3d φ log Z log K 2 = log Z log K 4 + log Z log K 4
106 92 105 breqtrrd φ log Z log K 4 + M + 1 log Z log K 2
107 fllep1 log Z log K 2 log Z log K 2 log Z log K 2 + 1
108 44 107 syl φ log Z log K 2 log Z log K 2 + 1
109 17 oveq1i N + 1 = log Z log K 2 + 1
110 108 109 breqtrrdi φ log Z log K 2 N + 1
111 70 44 72 106 110 letrd φ log Z log K 4 + M + 1 N + 1
112 68 111 eqbrtrd φ log Z log K 4 + M + 1 N + 1
113 50 52 readdcld φ log Z log K 4 + M
114 113 51 20 leadd1d φ log Z log K 4 + M N log Z log K 4 + M + 1 N + 1
115 112 114 mpbird φ log Z log K 4 + M N
116 leaddsub log Z log K 4 M N log Z log K 4 + M N log Z log K 4 N M
117 50 52 51 116 syl3anc φ log Z log K 4 + M N log Z log K 4 N M
118 115 117 mpbid φ log Z log K 4 N M
119 47 50 53 64 118 letrd φ 0 N M
120 51 52 subge0d φ 0 N M M N
121 119 120 mpbid φ M N
122 eluz2 N M M N M N
123 39 46 121 122 syl3anbrc φ N M
124 38 123 118 3jca φ M N M log Z log K 4 N M