| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntlem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 3 |  | pntlem1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | pntlem1.l | ⊢ ( 𝜑  →  𝐿  ∈  ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d | ⊢ 𝐷  =  ( 𝐴  +  1 ) | 
						
							| 6 |  | pntlem1.f | ⊢ 𝐹  =  ( ( 1  −  ( 1  /  𝐷 ) )  ·  ( ( 𝐿  /  ( ; 3 2  ·  𝐵 ) )  /  ( 𝐷 ↑ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u | ⊢ ( 𝜑  →  𝑈  ∈  ℝ+ ) | 
						
							| 8 |  | pntlem1.u2 | ⊢ ( 𝜑  →  𝑈  ≤  𝐴 ) | 
						
							| 9 |  | pntlem1.e | ⊢ 𝐸  =  ( 𝑈  /  𝐷 ) | 
						
							| 10 |  | pntlem1.k | ⊢ 𝐾  =  ( exp ‘ ( 𝐵  /  𝐸 ) ) | 
						
							| 11 |  | pntlem1.y | ⊢ ( 𝜑  →  ( 𝑌  ∈  ℝ+  ∧  1  ≤  𝑌 ) ) | 
						
							| 12 |  | pntlem1.x | ⊢ ( 𝜑  →  ( 𝑋  ∈  ℝ+  ∧  𝑌  <  𝑋 ) ) | 
						
							| 13 |  | pntlem1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 14 |  | pntlem1.w | ⊢ 𝑊  =  ( ( ( 𝑌  +  ( 4  /  ( 𝐿  ·  𝐸 ) ) ) ↑ 2 )  +  ( ( ( 𝑋  ·  ( 𝐾 ↑ 2 ) ) ↑ 4 )  +  ( exp ‘ ( ( ( ; 3 2  ·  𝐵 )  /  ( ( 𝑈  −  𝐸 )  ·  ( 𝐿  ·  ( 𝐸 ↑ 2 ) ) ) )  ·  ( ( 𝑈  ·  3 )  +  𝐶 ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊 [,) +∞ ) ) | 
						
							| 16 |  | pntlem1.m | ⊢ 𝑀  =  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 ) | 
						
							| 17 |  | pntlem1.n | ⊢ 𝑁  =  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) | 
						
							| 18 | 12 | simpld | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 19 | 18 | rpred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 20 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 21 | 11 | simpld | ⊢ ( 𝜑  →  𝑌  ∈  ℝ+ ) | 
						
							| 22 | 21 | rpred | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 23 | 11 | simprd | ⊢ ( 𝜑  →  1  ≤  𝑌 ) | 
						
							| 24 | 12 | simprd | ⊢ ( 𝜑  →  𝑌  <  𝑋 ) | 
						
							| 25 | 20 22 19 23 24 | lelttrd | ⊢ ( 𝜑  →  1  <  𝑋 ) | 
						
							| 26 | 19 25 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℝ+ ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 | pntlemc | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ+  ∧  𝐾  ∈  ℝ+  ∧  ( 𝐸  ∈  ( 0 (,) 1 )  ∧  1  <  𝐾  ∧  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) ) | 
						
							| 28 | 27 | simp2d | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 29 | 28 | rpred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 30 | 27 | simp3d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( 0 (,) 1 )  ∧  1  <  𝐾  ∧  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) | 
						
							| 31 | 30 | simp2d | ⊢ ( 𝜑  →  1  <  𝐾 ) | 
						
							| 32 | 29 31 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐾 )  ∈  ℝ+ ) | 
						
							| 33 | 26 32 | rpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ+ ) | 
						
							| 34 | 33 | rprege0d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  ∧  0  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) ) ) | 
						
							| 35 |  | flge0nn0 | ⊢ ( ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  ∧  0  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  →  ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ∈  ℕ0 ) | 
						
							| 36 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 37 | 34 35 36 | 3syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 38 | 16 37 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 39 | 38 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb | ⊢ ( 𝜑  →  ( 𝑍  ∈  ℝ+  ∧  ( 1  <  𝑍  ∧  e  ≤  ( √ ‘ 𝑍 )  ∧  ( √ ‘ 𝑍 )  ≤  ( 𝑍  /  𝑌 ) )  ∧  ( ( 4  /  ( 𝐿  ·  𝐸 ) )  ≤  ( √ ‘ 𝑍 )  ∧  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∧  ( ( 𝑈  ·  3 )  +  𝐶 )  ≤  ( ( ( 𝑈  −  𝐸 )  ·  ( ( 𝐿  ·  ( 𝐸 ↑ 2 ) )  /  ( ; 3 2  ·  𝐵 ) ) )  ·  ( log ‘ 𝑍 ) ) ) ) ) | 
						
							| 41 | 40 | simp1d | ⊢ ( 𝜑  →  𝑍  ∈  ℝ+ ) | 
						
							| 42 | 41 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 43 | 42 32 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ ) | 
						
							| 44 | 43 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ∈  ℝ ) | 
						
							| 45 | 44 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) )  ∈  ℤ ) | 
						
							| 46 | 17 45 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 47 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 48 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 49 |  | nndivre | ⊢ ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  ∧  4  ∈  ℕ )  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∈  ℝ ) | 
						
							| 50 | 43 48 49 | sylancl | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∈  ℝ ) | 
						
							| 51 | 46 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 52 | 38 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 53 | 51 52 | resubcld | ⊢ ( 𝜑  →  ( 𝑁  −  𝑀 )  ∈  ℝ ) | 
						
							| 54 | 41 | rpred | ⊢ ( 𝜑  →  𝑍  ∈  ℝ ) | 
						
							| 55 | 40 | simp2d | ⊢ ( 𝜑  →  ( 1  <  𝑍  ∧  e  ≤  ( √ ‘ 𝑍 )  ∧  ( √ ‘ 𝑍 )  ≤  ( 𝑍  /  𝑌 ) ) ) | 
						
							| 56 | 55 | simp1d | ⊢ ( 𝜑  →  1  <  𝑍 ) | 
						
							| 57 | 54 56 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑍 )  ∈  ℝ+ ) | 
						
							| 58 | 57 32 | rpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ+ ) | 
						
							| 59 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 60 |  | 4pos | ⊢ 0  <  4 | 
						
							| 61 | 59 60 | elrpii | ⊢ 4  ∈  ℝ+ | 
						
							| 62 |  | rpdivcl | ⊢ ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ+  ∧  4  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∈  ℝ+ ) | 
						
							| 63 | 58 61 62 | sylancl | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∈  ℝ+ ) | 
						
							| 64 | 63 | rpge0d | ⊢ ( 𝜑  →  0  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) | 
						
							| 65 | 50 | recnd | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∈  ℂ ) | 
						
							| 66 | 38 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 67 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 68 | 65 66 67 | addassd | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  +  1 )  =  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( 𝑀  +  1 ) ) ) | 
						
							| 69 | 52 20 | readdcld | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 70 | 50 69 | readdcld | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 71 |  | peano2re | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 72 | 51 71 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 73 | 33 | rpred | ⊢ ( 𝜑  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ ) | 
						
							| 74 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 75 | 74 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 76 | 73 75 | readdcld | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 )  ∈  ℝ ) | 
						
							| 77 |  | reflcl | ⊢ ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  →  ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ∈  ℝ ) | 
						
							| 78 | 73 77 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ∈  ℝ ) | 
						
							| 79 | 78 | recnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ∈  ℂ ) | 
						
							| 80 | 79 67 67 | addassd | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 )  +  1 )  =  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  ( 1  +  1 ) ) ) | 
						
							| 81 | 16 | oveq1i | ⊢ ( 𝑀  +  1 )  =  ( ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 )  +  1 ) | 
						
							| 82 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 83 | 82 | oveq2i | ⊢ ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  2 )  =  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  ( 1  +  1 ) ) | 
						
							| 84 | 80 81 83 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  =  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  2 ) ) | 
						
							| 85 |  | flle | ⊢ ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  →  ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) ) | 
						
							| 86 | 73 85 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) ) | 
						
							| 87 | 78 73 75 86 | leadd1dd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  2 )  ≤  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 ) ) | 
						
							| 88 | 84 87 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ≤  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 ) ) | 
						
							| 89 | 40 | simp3d | ⊢ ( 𝜑  →  ( ( 4  /  ( 𝐿  ·  𝐸 ) )  ≤  ( √ ‘ 𝑍 )  ∧  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∧  ( ( 𝑈  ·  3 )  +  𝐶 )  ≤  ( ( ( 𝑈  −  𝐸 )  ·  ( ( 𝐿  ·  ( 𝐸 ↑ 2 ) )  /  ( ; 3 2  ·  𝐵 ) ) )  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 90 | 89 | simp2d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) | 
						
							| 91 | 69 76 50 88 90 | letrd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) | 
						
							| 92 | 69 50 50 91 | leadd2dd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( 𝑀  +  1 ) )  ≤  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) ) | 
						
							| 93 | 43 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℂ ) | 
						
							| 94 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 95 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 96 | 95 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 97 | 93 94 94 96 96 | divdiv1d | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  /  2 )  =  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  ( 2  ·  2 ) ) ) | 
						
							| 98 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 99 | 98 | oveq2i | ⊢ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  ( 2  ·  2 ) )  =  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) | 
						
							| 100 | 97 99 | eqtrdi | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  /  2 )  =  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) | 
						
							| 101 | 100 | oveq2d | ⊢ ( 𝜑  →  ( 2  ·  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  /  2 ) )  =  ( 2  ·  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) ) | 
						
							| 102 | 44 | recnd | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ∈  ℂ ) | 
						
							| 103 | 102 94 96 | divcan2d | ⊢ ( 𝜑  →  ( 2  ·  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  /  2 ) )  =  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) | 
						
							| 104 | 65 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) )  =  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) ) | 
						
							| 105 | 101 103 104 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  =  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 ) ) ) | 
						
							| 106 | 92 105 | breqtrrd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( 𝑀  +  1 ) )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) | 
						
							| 107 |  | fllep1 | ⊢ ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ∈  ℝ  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ≤  ( ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) )  +  1 ) ) | 
						
							| 108 | 44 107 | syl | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ≤  ( ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) )  +  1 ) ) | 
						
							| 109 | 17 | oveq1i | ⊢ ( 𝑁  +  1 )  =  ( ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) )  +  1 ) | 
						
							| 110 | 108 109 | breqtrrdi | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ≤  ( 𝑁  +  1 ) ) | 
						
							| 111 | 70 44 72 106 110 | letrd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  ( 𝑀  +  1 ) )  ≤  ( 𝑁  +  1 ) ) | 
						
							| 112 | 68 111 | eqbrtrd | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  +  1 )  ≤  ( 𝑁  +  1 ) ) | 
						
							| 113 | 50 52 | readdcld | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  ∈  ℝ ) | 
						
							| 114 | 113 51 20 | leadd1d | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  ≤  𝑁  ↔  ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  +  1 )  ≤  ( 𝑁  +  1 ) ) ) | 
						
							| 115 | 112 114 | mpbird | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  ≤  𝑁 ) | 
						
							| 116 |  | leaddsub | ⊢ ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  ≤  𝑁  ↔  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ≤  ( 𝑁  −  𝑀 ) ) ) | 
						
							| 117 | 50 52 51 116 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  +  𝑀 )  ≤  𝑁  ↔  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ≤  ( 𝑁  −  𝑀 ) ) ) | 
						
							| 118 | 115 117 | mpbid | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ≤  ( 𝑁  −  𝑀 ) ) | 
						
							| 119 | 47 50 53 64 118 | letrd | ⊢ ( 𝜑  →  0  ≤  ( 𝑁  −  𝑀 ) ) | 
						
							| 120 | 51 52 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑁  −  𝑀 )  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 121 | 119 120 | mpbid | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 122 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 123 | 39 46 121 122 | syl3anbrc | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 124 | 38 123 118 | 3jca | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ≤  ( 𝑁  −  𝑀 ) ) ) |