| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntlem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 3 |  | pntlem1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | pntlem1.l | ⊢ ( 𝜑  →  𝐿  ∈  ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d | ⊢ 𝐷  =  ( 𝐴  +  1 ) | 
						
							| 6 |  | pntlem1.f | ⊢ 𝐹  =  ( ( 1  −  ( 1  /  𝐷 ) )  ·  ( ( 𝐿  /  ( ; 3 2  ·  𝐵 ) )  /  ( 𝐷 ↑ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u | ⊢ ( 𝜑  →  𝑈  ∈  ℝ+ ) | 
						
							| 8 |  | pntlem1.u2 | ⊢ ( 𝜑  →  𝑈  ≤  𝐴 ) | 
						
							| 9 |  | pntlem1.e | ⊢ 𝐸  =  ( 𝑈  /  𝐷 ) | 
						
							| 10 |  | pntlem1.k | ⊢ 𝐾  =  ( exp ‘ ( 𝐵  /  𝐸 ) ) | 
						
							| 11 |  | pntlem1.y | ⊢ ( 𝜑  →  ( 𝑌  ∈  ℝ+  ∧  1  ≤  𝑌 ) ) | 
						
							| 12 |  | pntlem1.x | ⊢ ( 𝜑  →  ( 𝑋  ∈  ℝ+  ∧  𝑌  <  𝑋 ) ) | 
						
							| 13 |  | pntlem1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 14 |  | pntlem1.w | ⊢ 𝑊  =  ( ( ( 𝑌  +  ( 4  /  ( 𝐿  ·  𝐸 ) ) ) ↑ 2 )  +  ( ( ( 𝑋  ·  ( 𝐾 ↑ 2 ) ) ↑ 4 )  +  ( exp ‘ ( ( ( ; 3 2  ·  𝐵 )  /  ( ( 𝑈  −  𝐸 )  ·  ( 𝐿  ·  ( 𝐸 ↑ 2 ) ) ) )  ·  ( ( 𝑈  ·  3 )  +  𝐶 ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊 [,) +∞ ) ) | 
						
							| 16 |  | pntlem1.m | ⊢ 𝑀  =  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 ) | 
						
							| 17 |  | pntlem1.n | ⊢ 𝑁  =  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) | 
						
							| 18 | 12 | simpld | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑋  ∈  ℝ+ ) | 
						
							| 20 | 19 | relogcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | pntlemc | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ+  ∧  𝐾  ∈  ℝ+  ∧  ( 𝐸  ∈  ( 0 (,) 1 )  ∧  1  <  𝐾  ∧  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) ) | 
						
							| 22 | 21 | simp2d | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 23 | 22 | rpred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 24 | 21 | simp3d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( 0 (,) 1 )  ∧  1  <  𝐾  ∧  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) | 
						
							| 25 | 24 | simp2d | ⊢ ( 𝜑  →  1  <  𝐾 ) | 
						
							| 26 | 23 25 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐾 )  ∈  ℝ+ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝐾 )  ∈  ℝ+ ) | 
						
							| 28 | 20 27 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemg | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ≤  ( 𝑁  −  𝑀 ) ) ) | 
						
							| 30 | 29 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 32 | 31 | nnred | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 33 |  | elfzuz | ⊢ ( 𝐽  ∈  ( 𝑀 ... 𝑁 )  →  𝐽  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 34 |  | eluznn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐽  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐽  ∈  ℕ ) | 
						
							| 35 | 30 33 34 | syl2an | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ∈  ℕ ) | 
						
							| 36 | 35 | nnred | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 37 |  | flltp1 | ⊢ ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  <  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 ) ) | 
						
							| 38 | 28 37 | syl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  <  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 ) ) | 
						
							| 39 | 38 16 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  <  𝑀 ) | 
						
							| 40 |  | elfzle1 | ⊢ ( 𝐽  ∈  ( 𝑀 ... 𝑁 )  →  𝑀  ≤  𝐽 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑀  ≤  𝐽 ) | 
						
							| 42 | 28 32 36 39 41 | ltletrd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  <  𝐽 ) | 
						
							| 43 | 20 36 27 | ltdivmul2d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  <  𝐽  ↔  ( log ‘ 𝑋 )  <  ( 𝐽  ·  ( log ‘ 𝐾 ) ) ) ) | 
						
							| 44 | 42 43 | mpbid | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝑋 )  <  ( 𝐽  ·  ( log ‘ 𝐾 ) ) ) | 
						
							| 45 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  ∈  ℝ+ ) | 
						
							| 46 |  | elfzelz | ⊢ ( 𝐽  ∈  ( 𝑀 ... 𝑁 )  →  𝐽  ∈  ℤ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 48 |  | relogexp | ⊢ ( ( 𝐾  ∈  ℝ+  ∧  𝐽  ∈  ℤ )  →  ( log ‘ ( 𝐾 ↑ 𝐽 ) )  =  ( 𝐽  ·  ( log ‘ 𝐾 ) ) ) | 
						
							| 49 | 45 47 48 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ ( 𝐾 ↑ 𝐽 ) )  =  ( 𝐽  ·  ( log ‘ 𝐾 ) ) ) | 
						
							| 50 | 44 49 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝑋 )  <  ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) | 
						
							| 51 | 45 47 | rpexpcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐾 ↑ 𝐽 )  ∈  ℝ+ ) | 
						
							| 52 |  | logltb | ⊢ ( ( 𝑋  ∈  ℝ+  ∧  ( 𝐾 ↑ 𝐽 )  ∈  ℝ+ )  →  ( 𝑋  <  ( 𝐾 ↑ 𝐽 )  ↔  ( log ‘ 𝑋 )  <  ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) | 
						
							| 53 | 19 51 52 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝑋  <  ( 𝐾 ↑ 𝐽 )  ↔  ( log ‘ 𝑋 )  <  ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) | 
						
							| 54 | 50 53 | mpbird | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑋  <  ( 𝐾 ↑ 𝐽 ) ) | 
						
							| 55 | 49 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 2  ·  ( log ‘ ( 𝐾 ↑ 𝐽 ) ) )  =  ( 2  ·  ( 𝐽  ·  ( log ‘ 𝐾 ) ) ) ) | 
						
							| 56 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 57 |  | relogexp | ⊢ ( ( ( 𝐾 ↑ 𝐽 )  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) )  =  ( 2  ·  ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) | 
						
							| 58 | 51 56 57 | sylancl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) )  =  ( 2  ·  ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) | 
						
							| 59 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  2  ∈  ℂ ) | 
						
							| 60 | 36 | recnd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ∈  ℂ ) | 
						
							| 61 | 45 | relogcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝐾 )  ∈  ℝ ) | 
						
							| 62 | 61 | recnd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 63 | 59 60 62 | mulassd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 2  ·  𝐽 )  ·  ( log ‘ 𝐾 ) )  =  ( 2  ·  ( 𝐽  ·  ( log ‘ 𝐾 ) ) ) ) | 
						
							| 64 | 55 58 63 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) )  =  ( ( 2  ·  𝐽 )  ·  ( log ‘ 𝐾 ) ) ) | 
						
							| 65 |  | elfzle2 | ⊢ ( 𝐽  ∈  ( 𝑀 ... 𝑁 )  →  𝐽  ≤  𝑁 ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ≤  𝑁 ) | 
						
							| 67 | 66 17 | breqtrdi | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ≤  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb | ⊢ ( 𝜑  →  ( 𝑍  ∈  ℝ+  ∧  ( 1  <  𝑍  ∧  e  ≤  ( √ ‘ 𝑍 )  ∧  ( √ ‘ 𝑍 )  ≤  ( 𝑍  /  𝑌 ) )  ∧  ( ( 4  /  ( 𝐿  ·  𝐸 ) )  ≤  ( √ ‘ 𝑍 )  ∧  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∧  ( ( 𝑈  ·  3 )  +  𝐶 )  ≤  ( ( ( 𝑈  −  𝐸 )  ·  ( ( 𝐿  ·  ( 𝐸 ↑ 2 ) )  /  ( ; 3 2  ·  𝐵 ) ) )  ·  ( log ‘ 𝑍 ) ) ) ) ) | 
						
							| 69 | 68 | simp1d | ⊢ ( 𝜑  →  𝑍  ∈  ℝ+ ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑍  ∈  ℝ+ ) | 
						
							| 71 | 70 | relogcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 72 | 71 27 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ ) | 
						
							| 73 | 72 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ∈  ℝ ) | 
						
							| 74 |  | flge | ⊢ ( ( ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ∈  ℝ  ∧  𝐽  ∈  ℤ )  →  ( 𝐽  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ↔  𝐽  ≤  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) ) ) | 
						
							| 75 | 73 47 74 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐽  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 )  ↔  𝐽  ≤  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) ) ) | 
						
							| 76 | 67 75 | mpbird | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐽  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) | 
						
							| 77 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 78 | 77 | a1i | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  2  ∈  ℝ ) | 
						
							| 79 |  | 2pos | ⊢ 0  <  2 | 
						
							| 80 | 79 | a1i | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  0  <  2 ) | 
						
							| 81 |  | lemuldiv2 | ⊢ ( ( 𝐽  ∈  ℝ  ∧  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  𝐽 )  ≤  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ↔  𝐽  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) ) | 
						
							| 82 | 36 72 78 80 81 | syl112anc | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 2  ·  𝐽 )  ≤  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  ↔  𝐽  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) ) | 
						
							| 83 | 76 82 | mpbird | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 2  ·  𝐽 )  ≤  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) ) ) | 
						
							| 84 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐽  ∈  ℝ )  →  ( 2  ·  𝐽 )  ∈  ℝ ) | 
						
							| 85 | 77 36 84 | sylancr | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 2  ·  𝐽 )  ∈  ℝ ) | 
						
							| 86 | 85 71 27 | lemuldivd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 2  ·  𝐽 )  ·  ( log ‘ 𝐾 ) )  ≤  ( log ‘ 𝑍 )  ↔  ( 2  ·  𝐽 )  ≤  ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) ) ) ) | 
						
							| 87 | 83 86 | mpbird | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 2  ·  𝐽 )  ·  ( log ‘ 𝐾 ) )  ≤  ( log ‘ 𝑍 ) ) | 
						
							| 88 | 64 87 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) )  ≤  ( log ‘ 𝑍 ) ) | 
						
							| 89 |  | rpexpcl | ⊢ ( ( ( 𝐾 ↑ 𝐽 )  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 90 | 51 56 89 | sylancl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 91 | 90 70 | logled | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ≤  𝑍  ↔  ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) )  ≤  ( log ‘ 𝑍 ) ) ) | 
						
							| 92 | 88 91 | mpbird | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ≤  𝑍 ) | 
						
							| 93 | 70 | rprege0d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝑍  ∈  ℝ  ∧  0  ≤  𝑍 ) ) | 
						
							| 94 |  | resqrtth | ⊢ ( ( 𝑍  ∈  ℝ  ∧  0  ≤  𝑍 )  →  ( ( √ ‘ 𝑍 ) ↑ 2 )  =  𝑍 ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( √ ‘ 𝑍 ) ↑ 2 )  =  𝑍 ) | 
						
							| 96 | 92 95 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ≤  ( ( √ ‘ 𝑍 ) ↑ 2 ) ) | 
						
							| 97 | 51 | rprege0d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐾 ↑ 𝐽 )  ∈  ℝ  ∧  0  ≤  ( 𝐾 ↑ 𝐽 ) ) ) | 
						
							| 98 | 70 | rpsqrtcld | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( √ ‘ 𝑍 )  ∈  ℝ+ ) | 
						
							| 99 | 98 | rprege0d | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( √ ‘ 𝑍 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝑍 ) ) ) | 
						
							| 100 |  | le2sq | ⊢ ( ( ( ( 𝐾 ↑ 𝐽 )  ∈  ℝ  ∧  0  ≤  ( 𝐾 ↑ 𝐽 ) )  ∧  ( ( √ ‘ 𝑍 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝑍 ) ) )  →  ( ( 𝐾 ↑ 𝐽 )  ≤  ( √ ‘ 𝑍 )  ↔  ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ≤  ( ( √ ‘ 𝑍 ) ↑ 2 ) ) ) | 
						
							| 101 | 97 99 100 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐾 ↑ 𝐽 )  ≤  ( √ ‘ 𝑍 )  ↔  ( ( 𝐾 ↑ 𝐽 ) ↑ 2 )  ≤  ( ( √ ‘ 𝑍 ) ↑ 2 ) ) ) | 
						
							| 102 | 96 101 | mpbird | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐾 ↑ 𝐽 )  ≤  ( √ ‘ 𝑍 ) ) | 
						
							| 103 | 54 102 | jca | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝑋  <  ( 𝐾 ↑ 𝐽 )  ∧  ( 𝐾 ↑ 𝐽 )  ≤  ( √ ‘ 𝑍 ) ) ) |