Metamath Proof Explorer


Theorem pntlemh

Description: Lemma for pnt . Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) )
pntlem1.a
|- ( ph -> A e. RR+ )
pntlem1.b
|- ( ph -> B e. RR+ )
pntlem1.l
|- ( ph -> L e. ( 0 (,) 1 ) )
pntlem1.d
|- D = ( A + 1 )
pntlem1.f
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) )
pntlem1.u
|- ( ph -> U e. RR+ )
pntlem1.u2
|- ( ph -> U <_ A )
pntlem1.e
|- E = ( U / D )
pntlem1.k
|- K = ( exp ` ( B / E ) )
pntlem1.y
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) )
pntlem1.x
|- ( ph -> ( X e. RR+ /\ Y < X ) )
pntlem1.c
|- ( ph -> C e. RR+ )
pntlem1.w
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) )
pntlem1.z
|- ( ph -> Z e. ( W [,) +oo ) )
pntlem1.m
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 )
pntlem1.n
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
Assertion pntlemh
|- ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) )

Proof

Step Hyp Ref Expression
1 pntlem1.r
 |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) )
2 pntlem1.a
 |-  ( ph -> A e. RR+ )
3 pntlem1.b
 |-  ( ph -> B e. RR+ )
4 pntlem1.l
 |-  ( ph -> L e. ( 0 (,) 1 ) )
5 pntlem1.d
 |-  D = ( A + 1 )
6 pntlem1.f
 |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) )
7 pntlem1.u
 |-  ( ph -> U e. RR+ )
8 pntlem1.u2
 |-  ( ph -> U <_ A )
9 pntlem1.e
 |-  E = ( U / D )
10 pntlem1.k
 |-  K = ( exp ` ( B / E ) )
11 pntlem1.y
 |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) )
12 pntlem1.x
 |-  ( ph -> ( X e. RR+ /\ Y < X ) )
13 pntlem1.c
 |-  ( ph -> C e. RR+ )
14 pntlem1.w
 |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) )
15 pntlem1.z
 |-  ( ph -> Z e. ( W [,) +oo ) )
16 pntlem1.m
 |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 )
17 pntlem1.n
 |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
18 12 simpld
 |-  ( ph -> X e. RR+ )
19 18 adantr
 |-  ( ( ph /\ J e. ( M ... N ) ) -> X e. RR+ )
20 19 relogcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) e. RR )
21 1 2 3 4 5 6 7 8 9 10 pntlemc
 |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) )
22 21 simp2d
 |-  ( ph -> K e. RR+ )
23 22 rpred
 |-  ( ph -> K e. RR )
24 21 simp3d
 |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) )
25 24 simp2d
 |-  ( ph -> 1 < K )
26 23 25 rplogcld
 |-  ( ph -> ( log ` K ) e. RR+ )
27 26 adantr
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. RR+ )
28 20 27 rerpdivcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) e. RR )
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg
 |-  ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) )
30 29 simp1d
 |-  ( ph -> M e. NN )
31 30 adantr
 |-  ( ( ph /\ J e. ( M ... N ) ) -> M e. NN )
32 31 nnred
 |-  ( ( ph /\ J e. ( M ... N ) ) -> M e. RR )
33 elfzuz
 |-  ( J e. ( M ... N ) -> J e. ( ZZ>= ` M ) )
34 eluznn
 |-  ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN )
35 30 33 34 syl2an
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. NN )
36 35 nnred
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. RR )
37 flltp1
 |-  ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( ( log ` X ) / ( log ` K ) ) < ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) )
38 28 37 syl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) )
39 38 16 breqtrrdi
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < M )
40 elfzle1
 |-  ( J e. ( M ... N ) -> M <_ J )
41 40 adantl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> M <_ J )
42 28 32 36 39 41 ltletrd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < J )
43 20 36 27 ltdivmul2d
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( log ` X ) / ( log ` K ) ) < J <-> ( log ` X ) < ( J x. ( log ` K ) ) ) )
44 42 43 mpbid
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) < ( J x. ( log ` K ) ) )
45 22 adantr
 |-  ( ( ph /\ J e. ( M ... N ) ) -> K e. RR+ )
46 elfzelz
 |-  ( J e. ( M ... N ) -> J e. ZZ )
47 46 adantl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. ZZ )
48 relogexp
 |-  ( ( K e. RR+ /\ J e. ZZ ) -> ( log ` ( K ^ J ) ) = ( J x. ( log ` K ) ) )
49 45 47 48 syl2anc
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( K ^ J ) ) = ( J x. ( log ` K ) ) )
50 44 49 breqtrrd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) < ( log ` ( K ^ J ) ) )
51 45 47 rpexpcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( K ^ J ) e. RR+ )
52 logltb
 |-  ( ( X e. RR+ /\ ( K ^ J ) e. RR+ ) -> ( X < ( K ^ J ) <-> ( log ` X ) < ( log ` ( K ^ J ) ) ) )
53 19 51 52 syl2anc
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) <-> ( log ` X ) < ( log ` ( K ^ J ) ) ) )
54 50 53 mpbird
 |-  ( ( ph /\ J e. ( M ... N ) ) -> X < ( K ^ J ) )
55 49 oveq2d
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. ( log ` ( K ^ J ) ) ) = ( 2 x. ( J x. ( log ` K ) ) ) )
56 2z
 |-  2 e. ZZ
57 relogexp
 |-  ( ( ( K ^ J ) e. RR+ /\ 2 e. ZZ ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( 2 x. ( log ` ( K ^ J ) ) ) )
58 51 56 57 sylancl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( 2 x. ( log ` ( K ^ J ) ) ) )
59 2cnd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> 2 e. CC )
60 36 recnd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. CC )
61 45 relogcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. RR )
62 61 recnd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. CC )
63 59 60 62 mulassd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) x. ( log ` K ) ) = ( 2 x. ( J x. ( log ` K ) ) ) )
64 55 58 63 3eqtr4d
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( ( 2 x. J ) x. ( log ` K ) ) )
65 elfzle2
 |-  ( J e. ( M ... N ) -> J <_ N )
66 65 adantl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J <_ N )
67 66 17 breqtrdi
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) )
68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb
 |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) )
69 68 simp1d
 |-  ( ph -> Z e. RR+ )
70 69 adantr
 |-  ( ( ph /\ J e. ( M ... N ) ) -> Z e. RR+ )
71 70 relogcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` Z ) e. RR )
72 71 27 rerpdivcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` Z ) / ( log ` K ) ) e. RR )
73 72 rehalfcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR )
74 flge
 |-  ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR /\ J e. ZZ ) -> ( J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <-> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) )
75 73 47 74 syl2anc
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <-> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) )
76 67 75 mpbird
 |-  ( ( ph /\ J e. ( M ... N ) ) -> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) )
77 2re
 |-  2 e. RR
78 77 a1i
 |-  ( ( ph /\ J e. ( M ... N ) ) -> 2 e. RR )
79 2pos
 |-  0 < 2
80 79 a1i
 |-  ( ( ph /\ J e. ( M ... N ) ) -> 0 < 2 )
81 lemuldiv2
 |-  ( ( J e. RR /\ ( ( log ` Z ) / ( log ` K ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) <-> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) )
82 36 72 78 80 81 syl112anc
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) <-> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) )
83 76 82 mpbird
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) )
84 remulcl
 |-  ( ( 2 e. RR /\ J e. RR ) -> ( 2 x. J ) e. RR )
85 77 36 84 sylancr
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. J ) e. RR )
86 85 71 27 lemuldivd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( 2 x. J ) x. ( log ` K ) ) <_ ( log ` Z ) <-> ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) ) )
87 83 86 mpbird
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) x. ( log ` K ) ) <_ ( log ` Z ) )
88 64 87 eqbrtrd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) <_ ( log ` Z ) )
89 rpexpcl
 |-  ( ( ( K ^ J ) e. RR+ /\ 2 e. ZZ ) -> ( ( K ^ J ) ^ 2 ) e. RR+ )
90 51 56 89 sylancl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) e. RR+ )
91 90 70 logled
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( K ^ J ) ^ 2 ) <_ Z <-> ( log ` ( ( K ^ J ) ^ 2 ) ) <_ ( log ` Z ) ) )
92 88 91 mpbird
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) <_ Z )
93 70 rprege0d
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( Z e. RR /\ 0 <_ Z ) )
94 resqrtth
 |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) ^ 2 ) = Z )
95 93 94 syl
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( sqrt ` Z ) ^ 2 ) = Z )
96 92 95 breqtrrd
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) )
97 51 rprege0d
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) e. RR /\ 0 <_ ( K ^ J ) ) )
98 70 rpsqrtcld
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( sqrt ` Z ) e. RR+ )
99 98 rprege0d
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) )
100 le2sq
 |-  ( ( ( ( K ^ J ) e. RR /\ 0 <_ ( K ^ J ) ) /\ ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) -> ( ( K ^ J ) <_ ( sqrt ` Z ) <-> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) )
101 97 99 100 syl2anc
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) <_ ( sqrt ` Z ) <-> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) )
102 96 101 mpbird
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( K ^ J ) <_ ( sqrt ` Z ) )
103 54 102 jca
 |-  ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) )