| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 | 12 | simpld |  |-  ( ph -> X e. RR+ ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ J e. ( M ... N ) ) -> X e. RR+ ) | 
						
							| 20 | 19 | relogcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) e. RR ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 22 | 21 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 23 | 22 | rpred |  |-  ( ph -> K e. RR ) | 
						
							| 24 | 21 | simp3d |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 25 | 24 | simp2d |  |-  ( ph -> 1 < K ) | 
						
							| 26 | 23 25 | rplogcld |  |-  ( ph -> ( log ` K ) e. RR+ ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. RR+ ) | 
						
							| 28 | 20 27 | rerpdivcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) e. RR ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemg |  |-  ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) | 
						
							| 30 | 29 | simp1d |  |-  ( ph -> M e. NN ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ J e. ( M ... N ) ) -> M e. NN ) | 
						
							| 32 | 31 | nnred |  |-  ( ( ph /\ J e. ( M ... N ) ) -> M e. RR ) | 
						
							| 33 |  | elfzuz |  |-  ( J e. ( M ... N ) -> J e. ( ZZ>= ` M ) ) | 
						
							| 34 |  | eluznn |  |-  ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN ) | 
						
							| 35 | 30 33 34 | syl2an |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. NN ) | 
						
							| 36 | 35 | nnred |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. RR ) | 
						
							| 37 |  | flltp1 |  |-  ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( ( log ` X ) / ( log ` K ) ) < ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) ) | 
						
							| 38 | 28 37 | syl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) ) | 
						
							| 39 | 38 16 | breqtrrdi |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < M ) | 
						
							| 40 |  | elfzle1 |  |-  ( J e. ( M ... N ) -> M <_ J ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> M <_ J ) | 
						
							| 42 | 28 32 36 39 41 | ltletrd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < J ) | 
						
							| 43 | 20 36 27 | ltdivmul2d |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( log ` X ) / ( log ` K ) ) < J <-> ( log ` X ) < ( J x. ( log ` K ) ) ) ) | 
						
							| 44 | 42 43 | mpbid |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) < ( J x. ( log ` K ) ) ) | 
						
							| 45 | 22 | adantr |  |-  ( ( ph /\ J e. ( M ... N ) ) -> K e. RR+ ) | 
						
							| 46 |  | elfzelz |  |-  ( J e. ( M ... N ) -> J e. ZZ ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. ZZ ) | 
						
							| 48 |  | relogexp |  |-  ( ( K e. RR+ /\ J e. ZZ ) -> ( log ` ( K ^ J ) ) = ( J x. ( log ` K ) ) ) | 
						
							| 49 | 45 47 48 | syl2anc |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( K ^ J ) ) = ( J x. ( log ` K ) ) ) | 
						
							| 50 | 44 49 | breqtrrd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) < ( log ` ( K ^ J ) ) ) | 
						
							| 51 | 45 47 | rpexpcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( K ^ J ) e. RR+ ) | 
						
							| 52 |  | logltb |  |-  ( ( X e. RR+ /\ ( K ^ J ) e. RR+ ) -> ( X < ( K ^ J ) <-> ( log ` X ) < ( log ` ( K ^ J ) ) ) ) | 
						
							| 53 | 19 51 52 | syl2anc |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) <-> ( log ` X ) < ( log ` ( K ^ J ) ) ) ) | 
						
							| 54 | 50 53 | mpbird |  |-  ( ( ph /\ J e. ( M ... N ) ) -> X < ( K ^ J ) ) | 
						
							| 55 | 49 | oveq2d |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. ( log ` ( K ^ J ) ) ) = ( 2 x. ( J x. ( log ` K ) ) ) ) | 
						
							| 56 |  | 2z |  |-  2 e. ZZ | 
						
							| 57 |  | relogexp |  |-  ( ( ( K ^ J ) e. RR+ /\ 2 e. ZZ ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( 2 x. ( log ` ( K ^ J ) ) ) ) | 
						
							| 58 | 51 56 57 | sylancl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( 2 x. ( log ` ( K ^ J ) ) ) ) | 
						
							| 59 |  | 2cnd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> 2 e. CC ) | 
						
							| 60 | 36 | recnd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J e. CC ) | 
						
							| 61 | 45 | relogcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. CC ) | 
						
							| 63 | 59 60 62 | mulassd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) x. ( log ` K ) ) = ( 2 x. ( J x. ( log ` K ) ) ) ) | 
						
							| 64 | 55 58 63 | 3eqtr4d |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( ( 2 x. J ) x. ( log ` K ) ) ) | 
						
							| 65 |  | elfzle2 |  |-  ( J e. ( M ... N ) -> J <_ N ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J <_ N ) | 
						
							| 67 | 66 17 | breqtrdi |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 69 | 68 | simp1d |  |-  ( ph -> Z e. RR+ ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ J e. ( M ... N ) ) -> Z e. RR+ ) | 
						
							| 71 | 70 | relogcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` Z ) e. RR ) | 
						
							| 72 | 71 27 | rerpdivcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` Z ) / ( log ` K ) ) e. RR ) | 
						
							| 73 | 72 | rehalfcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR ) | 
						
							| 74 |  | flge |  |-  ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR /\ J e. ZZ ) -> ( J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <-> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) ) | 
						
							| 75 | 73 47 74 | syl2anc |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <-> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) ) | 
						
							| 76 | 67 75 | mpbird |  |-  ( ( ph /\ J e. ( M ... N ) ) -> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 77 |  | 2re |  |-  2 e. RR | 
						
							| 78 | 77 | a1i |  |-  ( ( ph /\ J e. ( M ... N ) ) -> 2 e. RR ) | 
						
							| 79 |  | 2pos |  |-  0 < 2 | 
						
							| 80 | 79 | a1i |  |-  ( ( ph /\ J e. ( M ... N ) ) -> 0 < 2 ) | 
						
							| 81 |  | lemuldiv2 |  |-  ( ( J e. RR /\ ( ( log ` Z ) / ( log ` K ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) <-> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) | 
						
							| 82 | 36 72 78 80 81 | syl112anc |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) <-> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) | 
						
							| 83 | 76 82 | mpbird |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) ) | 
						
							| 84 |  | remulcl |  |-  ( ( 2 e. RR /\ J e. RR ) -> ( 2 x. J ) e. RR ) | 
						
							| 85 | 77 36 84 | sylancr |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. J ) e. RR ) | 
						
							| 86 | 85 71 27 | lemuldivd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( 2 x. J ) x. ( log ` K ) ) <_ ( log ` Z ) <-> ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) ) ) | 
						
							| 87 | 83 86 | mpbird |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) x. ( log ` K ) ) <_ ( log ` Z ) ) | 
						
							| 88 | 64 87 | eqbrtrd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) <_ ( log ` Z ) ) | 
						
							| 89 |  | rpexpcl |  |-  ( ( ( K ^ J ) e. RR+ /\ 2 e. ZZ ) -> ( ( K ^ J ) ^ 2 ) e. RR+ ) | 
						
							| 90 | 51 56 89 | sylancl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) e. RR+ ) | 
						
							| 91 | 90 70 | logled |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( K ^ J ) ^ 2 ) <_ Z <-> ( log ` ( ( K ^ J ) ^ 2 ) ) <_ ( log ` Z ) ) ) | 
						
							| 92 | 88 91 | mpbird |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) <_ Z ) | 
						
							| 93 | 70 | rprege0d |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( Z e. RR /\ 0 <_ Z ) ) | 
						
							| 94 |  | resqrtth |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) ^ 2 ) = Z ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( sqrt ` Z ) ^ 2 ) = Z ) | 
						
							| 96 | 92 95 | breqtrrd |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) | 
						
							| 97 | 51 | rprege0d |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) e. RR /\ 0 <_ ( K ^ J ) ) ) | 
						
							| 98 | 70 | rpsqrtcld |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( sqrt ` Z ) e. RR+ ) | 
						
							| 99 | 98 | rprege0d |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) | 
						
							| 100 |  | le2sq |  |-  ( ( ( ( K ^ J ) e. RR /\ 0 <_ ( K ^ J ) ) /\ ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) -> ( ( K ^ J ) <_ ( sqrt ` Z ) <-> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 101 | 97 99 100 | syl2anc |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) <_ ( sqrt ` Z ) <-> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) ) | 
						
							| 102 | 96 101 | mpbird |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( K ^ J ) <_ ( sqrt ` Z ) ) | 
						
							| 103 | 54 102 | jca |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) ) |