Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
15 |
|
pntlem1.z |
|- ( ph -> Z e. ( W [,) +oo ) ) |
16 |
|
pntlem1.m |
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) |
17 |
|
pntlem1.n |
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
18 |
12
|
simpld |
|- ( ph -> X e. RR+ ) |
19 |
18
|
adantr |
|- ( ( ph /\ J e. ( M ... N ) ) -> X e. RR+ ) |
20 |
19
|
relogcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) e. RR ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
22 |
21
|
simp2d |
|- ( ph -> K e. RR+ ) |
23 |
22
|
rpred |
|- ( ph -> K e. RR ) |
24 |
21
|
simp3d |
|- ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) |
25 |
24
|
simp2d |
|- ( ph -> 1 < K ) |
26 |
23 25
|
rplogcld |
|- ( ph -> ( log ` K ) e. RR+ ) |
27 |
26
|
adantr |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. RR+ ) |
28 |
20 27
|
rerpdivcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) e. RR ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
|- ( ph -> ( M e. NN /\ N e. ( ZZ>= ` M ) /\ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) <_ ( N - M ) ) ) |
30 |
29
|
simp1d |
|- ( ph -> M e. NN ) |
31 |
30
|
adantr |
|- ( ( ph /\ J e. ( M ... N ) ) -> M e. NN ) |
32 |
31
|
nnred |
|- ( ( ph /\ J e. ( M ... N ) ) -> M e. RR ) |
33 |
|
elfzuz |
|- ( J e. ( M ... N ) -> J e. ( ZZ>= ` M ) ) |
34 |
|
eluznn |
|- ( ( M e. NN /\ J e. ( ZZ>= ` M ) ) -> J e. NN ) |
35 |
30 33 34
|
syl2an |
|- ( ( ph /\ J e. ( M ... N ) ) -> J e. NN ) |
36 |
35
|
nnred |
|- ( ( ph /\ J e. ( M ... N ) ) -> J e. RR ) |
37 |
|
flltp1 |
|- ( ( ( log ` X ) / ( log ` K ) ) e. RR -> ( ( log ` X ) / ( log ` K ) ) < ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) ) |
38 |
28 37
|
syl |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) ) |
39 |
38 16
|
breqtrrdi |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < M ) |
40 |
|
elfzle1 |
|- ( J e. ( M ... N ) -> M <_ J ) |
41 |
40
|
adantl |
|- ( ( ph /\ J e. ( M ... N ) ) -> M <_ J ) |
42 |
28 32 36 39 41
|
ltletrd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` X ) / ( log ` K ) ) < J ) |
43 |
20 36 27
|
ltdivmul2d |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( log ` X ) / ( log ` K ) ) < J <-> ( log ` X ) < ( J x. ( log ` K ) ) ) ) |
44 |
42 43
|
mpbid |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) < ( J x. ( log ` K ) ) ) |
45 |
22
|
adantr |
|- ( ( ph /\ J e. ( M ... N ) ) -> K e. RR+ ) |
46 |
|
elfzelz |
|- ( J e. ( M ... N ) -> J e. ZZ ) |
47 |
46
|
adantl |
|- ( ( ph /\ J e. ( M ... N ) ) -> J e. ZZ ) |
48 |
|
relogexp |
|- ( ( K e. RR+ /\ J e. ZZ ) -> ( log ` ( K ^ J ) ) = ( J x. ( log ` K ) ) ) |
49 |
45 47 48
|
syl2anc |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( K ^ J ) ) = ( J x. ( log ` K ) ) ) |
50 |
44 49
|
breqtrrd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` X ) < ( log ` ( K ^ J ) ) ) |
51 |
45 47
|
rpexpcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( K ^ J ) e. RR+ ) |
52 |
|
logltb |
|- ( ( X e. RR+ /\ ( K ^ J ) e. RR+ ) -> ( X < ( K ^ J ) <-> ( log ` X ) < ( log ` ( K ^ J ) ) ) ) |
53 |
19 51 52
|
syl2anc |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) <-> ( log ` X ) < ( log ` ( K ^ J ) ) ) ) |
54 |
50 53
|
mpbird |
|- ( ( ph /\ J e. ( M ... N ) ) -> X < ( K ^ J ) ) |
55 |
49
|
oveq2d |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. ( log ` ( K ^ J ) ) ) = ( 2 x. ( J x. ( log ` K ) ) ) ) |
56 |
|
2z |
|- 2 e. ZZ |
57 |
|
relogexp |
|- ( ( ( K ^ J ) e. RR+ /\ 2 e. ZZ ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( 2 x. ( log ` ( K ^ J ) ) ) ) |
58 |
51 56 57
|
sylancl |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( 2 x. ( log ` ( K ^ J ) ) ) ) |
59 |
|
2cnd |
|- ( ( ph /\ J e. ( M ... N ) ) -> 2 e. CC ) |
60 |
36
|
recnd |
|- ( ( ph /\ J e. ( M ... N ) ) -> J e. CC ) |
61 |
45
|
relogcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. RR ) |
62 |
61
|
recnd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` K ) e. CC ) |
63 |
59 60 62
|
mulassd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) x. ( log ` K ) ) = ( 2 x. ( J x. ( log ` K ) ) ) ) |
64 |
55 58 63
|
3eqtr4d |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) = ( ( 2 x. J ) x. ( log ` K ) ) ) |
65 |
|
elfzle2 |
|- ( J e. ( M ... N ) -> J <_ N ) |
66 |
65
|
adantl |
|- ( ( ph /\ J e. ( M ... N ) ) -> J <_ N ) |
67 |
66 17
|
breqtrdi |
|- ( ( ph /\ J e. ( M ... N ) ) -> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) |
68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|- ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
69 |
68
|
simp1d |
|- ( ph -> Z e. RR+ ) |
70 |
69
|
adantr |
|- ( ( ph /\ J e. ( M ... N ) ) -> Z e. RR+ ) |
71 |
70
|
relogcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` Z ) e. RR ) |
72 |
71 27
|
rerpdivcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( log ` Z ) / ( log ` K ) ) e. RR ) |
73 |
72
|
rehalfcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR ) |
74 |
|
flge |
|- ( ( ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) e. RR /\ J e. ZZ ) -> ( J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <-> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) ) |
75 |
73 47 74
|
syl2anc |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) <-> J <_ ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) ) |
76 |
67 75
|
mpbird |
|- ( ( ph /\ J e. ( M ... N ) ) -> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
77 |
|
2re |
|- 2 e. RR |
78 |
77
|
a1i |
|- ( ( ph /\ J e. ( M ... N ) ) -> 2 e. RR ) |
79 |
|
2pos |
|- 0 < 2 |
80 |
79
|
a1i |
|- ( ( ph /\ J e. ( M ... N ) ) -> 0 < 2 ) |
81 |
|
lemuldiv2 |
|- ( ( J e. RR /\ ( ( log ` Z ) / ( log ` K ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) <-> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) |
82 |
36 72 78 80 81
|
syl112anc |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) <-> J <_ ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) ) |
83 |
76 82
|
mpbird |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) ) |
84 |
|
remulcl |
|- ( ( 2 e. RR /\ J e. RR ) -> ( 2 x. J ) e. RR ) |
85 |
77 36 84
|
sylancr |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( 2 x. J ) e. RR ) |
86 |
85 71 27
|
lemuldivd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( 2 x. J ) x. ( log ` K ) ) <_ ( log ` Z ) <-> ( 2 x. J ) <_ ( ( log ` Z ) / ( log ` K ) ) ) ) |
87 |
83 86
|
mpbird |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( 2 x. J ) x. ( log ` K ) ) <_ ( log ` Z ) ) |
88 |
64 87
|
eqbrtrd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( log ` ( ( K ^ J ) ^ 2 ) ) <_ ( log ` Z ) ) |
89 |
|
rpexpcl |
|- ( ( ( K ^ J ) e. RR+ /\ 2 e. ZZ ) -> ( ( K ^ J ) ^ 2 ) e. RR+ ) |
90 |
51 56 89
|
sylancl |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) e. RR+ ) |
91 |
90 70
|
logled |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( ( K ^ J ) ^ 2 ) <_ Z <-> ( log ` ( ( K ^ J ) ^ 2 ) ) <_ ( log ` Z ) ) ) |
92 |
88 91
|
mpbird |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) <_ Z ) |
93 |
70
|
rprege0d |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( Z e. RR /\ 0 <_ Z ) ) |
94 |
|
resqrtth |
|- ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) ^ 2 ) = Z ) |
95 |
93 94
|
syl |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( sqrt ` Z ) ^ 2 ) = Z ) |
96 |
92 95
|
breqtrrd |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) |
97 |
51
|
rprege0d |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) e. RR /\ 0 <_ ( K ^ J ) ) ) |
98 |
70
|
rpsqrtcld |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( sqrt ` Z ) e. RR+ ) |
99 |
98
|
rprege0d |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) |
100 |
|
le2sq |
|- ( ( ( ( K ^ J ) e. RR /\ 0 <_ ( K ^ J ) ) /\ ( ( sqrt ` Z ) e. RR /\ 0 <_ ( sqrt ` Z ) ) ) -> ( ( K ^ J ) <_ ( sqrt ` Z ) <-> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) ) |
101 |
97 99 100
|
syl2anc |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( ( K ^ J ) <_ ( sqrt ` Z ) <-> ( ( K ^ J ) ^ 2 ) <_ ( ( sqrt ` Z ) ^ 2 ) ) ) |
102 |
96 101
|
mpbird |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( K ^ J ) <_ ( sqrt ` Z ) ) |
103 |
54 102
|
jca |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) ) |