| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
pntlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 3 |
|
pntlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 4 |
|
pntlem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |
| 5 |
|
pntlem1.d |
⊢ 𝐷 = ( 𝐴 + 1 ) |
| 6 |
|
pntlem1.f |
⊢ 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) |
| 7 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 8 |
7 4
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 9 |
|
eliooord |
⊢ ( 𝐿 ∈ ( 0 (,) 1 ) → ( 0 < 𝐿 ∧ 𝐿 < 1 ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐿 ∧ 𝐿 < 1 ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → 0 < 𝐿 ) |
| 12 |
8 11
|
elrpd |
⊢ ( 𝜑 → 𝐿 ∈ ℝ+ ) |
| 13 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 14 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 15 |
2 13 14
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 16 |
5 15
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 17 |
|
1re |
⊢ 1 ∈ ℝ |
| 18 |
|
ltaddrp |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 1 < ( 1 + 𝐴 ) ) |
| 19 |
17 2 18
|
sylancr |
⊢ ( 𝜑 → 1 < ( 1 + 𝐴 ) ) |
| 20 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 22 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 23 |
20 21 22
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 24 |
5 23
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = ( 1 + 𝐴 ) ) |
| 25 |
19 24
|
breqtrrd |
⊢ ( 𝜑 → 1 < 𝐷 ) |
| 26 |
16
|
recgt1d |
⊢ ( 𝜑 → ( 1 < 𝐷 ↔ ( 1 / 𝐷 ) < 1 ) ) |
| 27 |
25 26
|
mpbid |
⊢ ( 𝜑 → ( 1 / 𝐷 ) < 1 ) |
| 28 |
16
|
rprecred |
⊢ ( 𝜑 → ( 1 / 𝐷 ) ∈ ℝ ) |
| 29 |
|
difrp |
⊢ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 𝐷 ) < 1 ↔ ( 1 − ( 1 / 𝐷 ) ) ∈ ℝ+ ) ) |
| 30 |
28 17 29
|
sylancl |
⊢ ( 𝜑 → ( ( 1 / 𝐷 ) < 1 ↔ ( 1 − ( 1 / 𝐷 ) ) ∈ ℝ+ ) ) |
| 31 |
27 30
|
mpbid |
⊢ ( 𝜑 → ( 1 − ( 1 / 𝐷 ) ) ∈ ℝ+ ) |
| 32 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 33 |
|
2nn |
⊢ 2 ∈ ℕ |
| 34 |
32 33
|
decnncl |
⊢ ; 3 2 ∈ ℕ |
| 35 |
|
nnrp |
⊢ ( ; 3 2 ∈ ℕ → ; 3 2 ∈ ℝ+ ) |
| 36 |
34 35
|
ax-mp |
⊢ ; 3 2 ∈ ℝ+ |
| 37 |
|
rpmulcl |
⊢ ( ( ; 3 2 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ; 3 2 · 𝐵 ) ∈ ℝ+ ) |
| 38 |
36 3 37
|
sylancr |
⊢ ( 𝜑 → ( ; 3 2 · 𝐵 ) ∈ ℝ+ ) |
| 39 |
12 38
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐿 / ( ; 3 2 · 𝐵 ) ) ∈ ℝ+ ) |
| 40 |
|
2z |
⊢ 2 ∈ ℤ |
| 41 |
|
rpexpcl |
⊢ ( ( 𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
| 42 |
16 40 41
|
sylancl |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
| 43 |
39 42
|
rpdivcld |
⊢ ( 𝜑 → ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ∈ ℝ+ ) |
| 44 |
31 43
|
rpmulcld |
⊢ ( 𝜑 → ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) ∈ ℝ+ ) |
| 45 |
6 44
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ℝ+ ) |
| 46 |
12 16 45
|
3jca |
⊢ ( 𝜑 → ( 𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+ ) ) |