| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntibnd.r |
|
| 2 |
1
|
pntrsumbnd2 |
|
| 3 |
|
simpl |
|
| 4 |
|
2rp |
|
| 5 |
|
rpaddcl |
|
| 6 |
3 4 5
|
sylancl |
|
| 7 |
|
2re |
|
| 8 |
|
elioore |
|
| 9 |
8
|
adantl |
|
| 10 |
|
eliooord |
|
| 11 |
10
|
adantl |
|
| 12 |
11
|
simpld |
|
| 13 |
9 12
|
elrpd |
|
| 14 |
|
rerpdivcl |
|
| 15 |
7 13 14
|
sylancr |
|
| 16 |
15
|
rpefcld |
|
| 17 |
|
simpllr |
|
| 18 |
|
eqid |
|
| 19 |
|
simplrr |
|
| 20 |
|
simp-4l |
|
| 21 |
|
simp-4r |
|
| 22 |
|
eqid |
|
| 23 |
|
simplrl |
|
| 24 |
|
simpr |
|
| 25 |
1 17 18 19 20 21 22 23 24
|
pntpbnd2 |
|
| 26 |
|
iman |
|
| 27 |
25 26
|
mpbir |
|
| 28 |
27
|
ralrimivva |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
raleqdv |
|
| 31 |
30
|
ralbidv |
|
| 32 |
31
|
rspcev |
|
| 33 |
16 28 32
|
syl2anc |
|
| 34 |
33
|
ralrimiva |
|
| 35 |
|
fvoveq1 |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
raleqdv |
|
| 38 |
37
|
rexbidv |
|
| 39 |
38
|
ralbidv |
|
| 40 |
39
|
rspcev |
|
| 41 |
6 34 40
|
syl2anc |
|
| 42 |
41
|
rexlimiva |
|
| 43 |
2 42
|
ax-mp |
|