Metamath Proof Explorer


Theorem pntpbnd2

Description: Lemma for pntpbnd . (Contributed by Mario Carneiro, 11-Apr-2016)

Ref Expression
Hypotheses pntpbnd.r R=a+ψaa
pntpbnd1.e φE01
pntpbnd1.x X=e2E
pntpbnd1.y φYX+∞
pntpbnd1.1 φA+
pntpbnd1.2 φijy=ijRyyy+1A
pntpbnd1.c C=A+2
pntpbnd1.k φKeCE+∞
pntpbnd1.3 φ¬yY<yyKYRyyE
Assertion pntpbnd2 ¬φ

Proof

Step Hyp Ref Expression
1 pntpbnd.r R=a+ψaa
2 pntpbnd1.e φE01
3 pntpbnd1.x X=e2E
4 pntpbnd1.y φYX+∞
5 pntpbnd1.1 φA+
6 pntpbnd1.2 φijy=ijRyyy+1A
7 pntpbnd1.c C=A+2
8 pntpbnd1.k φKeCE+∞
9 pntpbnd1.3 φ¬yY<yyKYRyyE
10 2div2e1 22=1
11 2re 2
12 11 a1i φ2
13 ioossre 01
14 13 2 sselid φE
15 eliooord E010<EE<1
16 2 15 syl φ0<EE<1
17 16 simpld φ0<E
18 14 17 elrpd φE+
19 2rp 2+
20 19 a1i φ2+
21 7 oveq1i CA=A+2-A
22 5 rpcnd φA
23 2cn 2
24 pncan2 A2A+2-A=2
25 22 23 24 sylancl φA+2-A=2
26 21 25 eqtrid φCA=2
27 26 oveq1d φCAE=2E
28 rpaddcl A+2+A+2+
29 5 19 28 sylancl φA+2+
30 7 29 eqeltrid φC+
31 30 rpcnd φC
32 14 recnd φE
33 18 rpne0d φE0
34 31 22 32 33 divsubdird φCAE=CEAE
35 27 34 eqtr3d φ2E=CEAE
36 30 18 rpdivcld φCE+
37 36 rpred φCE
38 5 rpred φA
39 38 18 rerpdivcld φAE
40 resubcl CE2CE2
41 37 11 40 sylancl φCE2
42 37 reefcld φeCE
43 elicopnf eCEKeCE+∞KeCEK
44 42 43 syl φKeCE+∞KeCEK
45 8 44 mpbid φKeCEK
46 45 simpld φK
47 0red φ0
48 1re 1
49 48 a1i φ1
50 0lt1 0<1
51 50 a1i φ0<1
52 efgt1 CE+1<eCE
53 36 52 syl φ1<eCE
54 45 simprd φeCEK
55 49 42 46 53 54 ltletrd φ1<K
56 47 49 46 51 55 lttrd φ0<K
57 46 56 elrpd φK+
58 57 relogcld φlogK
59 resubcl logK2logK2
60 58 11 59 sylancl φlogK2
61 57 reeflogd φelogK=K
62 54 61 breqtrrd φeCEelogK
63 efle CElogKCElogKeCEelogK
64 37 58 63 syl2anc φCElogKeCEelogK
65 62 64 mpbird φCElogK
66 37 58 12 65 lesub1dd φCE2logK2
67 fzfid φY+1KYFin
68 ioossre X+∞
69 68 4 sselid φY
70 rerpdivcl 2E+2E
71 11 18 70 sylancr φ2E
72 71 reefcld φe2E
73 3 72 eqeltrid φX
74 efgt0 2E0<e2E
75 71 74 syl φ0<e2E
76 75 3 breqtrrdi φ0<X
77 73 rexrd φX*
78 elioopnf X*YX+∞YX<Y
79 77 78 syl φYX+∞YX<Y
80 4 79 mpbid φYX<Y
81 80 simprd φX<Y
82 47 73 69 76 81 lttrd φ0<Y
83 47 69 82 ltled φ0Y
84 flge0nn0 Y0YY0
85 69 83 84 syl2anc φY0
86 nn0p1nn Y0Y+1
87 85 86 syl φY+1
88 elfzuz nY+1KYnY+1
89 eluznn Y+1nY+1n
90 87 88 89 syl2an φnY+1KYn
91 90 peano2nnd φnY+1KYn+1
92 91 nnrecred φnY+1KY1n+1
93 67 92 fsumrecl φn=Y+1KY1n+1
94 58 recnd φlogK
95 2cnd φ2
96 69 82 elrpd φY+
97 96 relogcld φlogY
98 97 recnd φlogY
99 94 95 98 pnpcan2d φlogK+logY-2+logY=logK2
100 57 96 relogmuld φlogKY=logK+logY
101 58 97 readdcld φlogK+logY
102 100 101 eqeltrd φlogKY
103 fzfid φ0YFin
104 elfznn0 n0Yn0
105 104 adantl φn0Yn0
106 nn0p1nn n0n+1
107 105 106 syl φn0Yn+1
108 107 nnrecred φn0Y1n+1
109 103 108 fsumrecl φn=0Y1n+1
110 109 93 readdcld φn=0Y1n+1+n=Y+1KY1n+1
111 readdcl 2logY2+logY
112 11 97 111 sylancr φ2+logY
113 112 93 readdcld φ2+logY+n=Y+1KY1n+1
114 46 69 remulcld φKY
115 69 recnd φY
116 115 mullidd φ1Y=Y
117 49 46 55 ltled φ1K
118 lemul1 1KY0<Y1K1YKY
119 49 46 69 82 118 syl112anc φ1K1YKY
120 117 119 mpbid φ1YKY
121 116 120 eqbrtrrd φYKY
122 47 69 114 83 121 letrd φ0KY
123 flge0nn0 KY0KYKY0
124 114 122 123 syl2anc φKY0
125 nn0p1nn KY0KY+1
126 124 125 syl φKY+1
127 126 nnrpd φKY+1+
128 127 relogcld φlogKY+1
129 1zzd φ1
130 114 flcld φKY
131 130 peano2zd φKY+1
132 elfznn k1KY+1k
133 132 adantl φk1KY+1k
134 nnrecre k1k
135 134 recnd k1k
136 133 135 syl φk1KY+11k
137 oveq2 k=n+11k=1n+1
138 129 129 131 136 137 fsumshftm φk=1KY+11k=n=11KY+1-11n+1
139 1m1e0 11=0
140 139 a1i φ11=0
141 130 zcnd φKY
142 ax-1cn 1
143 pncan KY1KY+1-1=KY
144 141 142 143 sylancl φKY+1-1=KY
145 140 144 oveq12d φ11KY+1-1=0KY
146 145 sumeq1d φn=11KY+1-11n+1=n=0KY1n+1
147 reflcl YY
148 69 147 syl φY
149 148 ltp1d φY<Y+1
150 fzdisj Y<Y+10YY+1KY=
151 149 150 syl φ0YY+1KY=
152 flwordi YKYYKYYKY
153 69 114 121 152 syl3anc φYKY
154 elfz2nn0 Y0KYY0KY0YKY
155 85 124 153 154 syl3anbrc φY0KY
156 fzsplit Y0KY0KY=0YY+1KY
157 155 156 syl φ0KY=0YY+1KY
158 fzfid φ0KYFin
159 elfznn0 n0KYn0
160 159 adantl φn0KYn0
161 160 106 syl φn0KYn+1
162 161 nnrecred φn0KY1n+1
163 162 recnd φn0KY1n+1
164 151 157 158 163 fsumsplit φn=0KY1n+1=n=0Y1n+1+n=Y+1KY1n+1
165 138 146 164 3eqtrd φk=1KY+11k=n=0Y1n+1+n=Y+1KY1n+1
166 165 110 eqeltrd φk=1KY+11k
167 fllep1 KYKYKY+1
168 114 167 syl φKYKY+1
169 57 96 rpmulcld φKY+
170 169 127 logled φKYKY+1logKYlogKY+1
171 168 170 mpbid φlogKYlogKY+1
172 emre γ
173 172 a1i φγ
174 166 128 resubcld φk=1KY+11klogKY+1
175 0re 0
176 emgt0 0<γ
177 175 172 176 ltleii 0γ
178 177 a1i φ0γ
179 harmonicbnd KY+1k=1KY+11klogKY+1γ1
180 126 179 syl φk=1KY+11klogKY+1γ1
181 172 48 elicc2i k=1KY+11klogKY+1γ1k=1KY+11klogKY+1γk=1KY+11klogKY+1k=1KY+11klogKY+11
182 181 simp2bi k=1KY+11klogKY+1γ1γk=1KY+11klogKY+1
183 180 182 syl φγk=1KY+11klogKY+1
184 47 173 174 178 183 letrd φ0k=1KY+11klogKY+1
185 166 128 subge0d φ0k=1KY+11klogKY+1logKY+1k=1KY+11k
186 184 185 mpbid φlogKY+1k=1KY+11k
187 102 128 166 171 186 letrd φlogKYk=1KY+11k
188 187 165 breqtrd φlogKYn=0Y1n+1+n=Y+1KY1n+1
189 69 flcld φY
190 189 peano2zd φY+1
191 elfznn k1Y+1k
192 191 adantl φk1Y+1k
193 192 135 syl φk1Y+11k
194 129 129 190 193 137 fsumshftm φk=1Y+11k=n=11Y+1-11n+1
195 148 recnd φY
196 pncan Y1Y+1-1=Y
197 195 142 196 sylancl φY+1-1=Y
198 140 197 oveq12d φ11Y+1-1=0Y
199 198 sumeq1d φn=11Y+1-11n+1=n=0Y1n+1
200 194 199 eqtrd φk=1Y+11k=n=0Y1n+1
201 200 109 eqeltrd φk=1Y+11k
202 87 nnrpd φY+1+
203 202 relogcld φlogY+1
204 readdcl 1logY+11+logY+1
205 48 203 204 sylancr φ1+logY+1
206 harmonicbnd Y+1k=1Y+11klogY+1γ1
207 87 206 syl φk=1Y+11klogY+1γ1
208 172 48 elicc2i k=1Y+11klogY+1γ1k=1Y+11klogY+1γk=1Y+11klogY+1k=1Y+11klogY+11
209 208 simp3bi k=1Y+11klogY+1γ1k=1Y+11klogY+11
210 207 209 syl φk=1Y+11klogY+11
211 201 203 49 lesubaddd φk=1Y+11klogY+11k=1Y+11k1+logY+1
212 210 211 mpbid φk=1Y+11k1+logY+1
213 readdcl 1logY1+logY
214 48 97 213 sylancr φ1+logY
215 peano2re YY+1
216 148 215 syl φY+1
217 12 69 remulcld φ2Y
218 epr e+
219 rpmulcl e+Y+eY+
220 218 96 219 sylancr φeY+
221 220 rpred φeY
222 flle YYY
223 69 222 syl φYY
224 20 18 rpdivcld φ2E+
225 efgt1 2E+1<e2E
226 224 225 syl φ1<e2E
227 226 3 breqtrrdi φ1<X
228 49 73 69 227 81 lttrd φ1<Y
229 49 69 228 ltled φ1Y
230 148 49 69 69 223 229 le2addd φY+1Y+Y
231 115 2timesd φ2Y=Y+Y
232 230 231 breqtrrd φY+12Y
233 ere e
234 egt2lt3 2<ee<3
235 234 simpli 2<e
236 11 233 235 ltleii 2e
237 236 a1i φ2e
238 233 a1i φe
239 lemul1 2eY0<Y2e2YeY
240 12 238 69 82 239 syl112anc φ2e2YeY
241 237 240 mpbid φ2YeY
242 216 217 221 232 241 letrd φY+1eY
243 202 220 logled φY+1eYlogY+1logeY
244 242 243 mpbid φlogY+1logeY
245 relogmul e+Y+logeY=loge+logY
246 218 96 245 sylancr φlogeY=loge+logY
247 loge loge=1
248 247 oveq1i loge+logY=1+logY
249 246 248 eqtrdi φlogeY=1+logY
250 244 249 breqtrd φlogY+11+logY
251 203 214 49 250 leadd2dd φ1+logY+11+1+logY
252 df-2 2=1+1
253 252 oveq1i 2+logY=1+1+logY
254 142 a1i φ1
255 254 254 98 addassd φ1+1+logY=1+1+logY
256 253 255 eqtrid φ2+logY=1+1+logY
257 251 256 breqtrrd φ1+logY+12+logY
258 201 205 112 212 257 letrd φk=1Y+11k2+logY
259 200 258 eqbrtrrd φn=0Y1n+12+logY
260 109 112 93 259 leadd1dd φn=0Y1n+1+n=Y+1KY1n+12+logY+n=Y+1KY1n+1
261 102 110 113 188 260 letrd φlogKY2+logY+n=Y+1KY1n+1
262 100 261 eqbrtrrd φlogK+logY2+logY+n=Y+1KY1n+1
263 101 112 93 lesubadd2d φlogK+logY-2+logYn=Y+1KY1n+1logK+logY2+logY+n=Y+1KY1n+1
264 262 263 mpbird φlogK+logY-2+logYn=Y+1KY1n+1
265 99 264 eqbrtrrd φlogK2n=Y+1KY1n+1
266 92 recnd φnY+1KY1n+1
267 67 32 266 fsummulc2 φEn=Y+1KY1n+1=n=Y+1KYE1n+1
268 14 adantr φnY+1KYE
269 268 recnd φnY+1KYE
270 91 nncnd φnY+1KYn+1
271 91 nnne0d φnY+1KYn+10
272 269 270 271 divrecd φnY+1KYEn+1=E1n+1
273 268 91 nndivred φnY+1KYEn+1
274 272 273 eqeltrrd φnY+1KYE1n+1
275 67 274 fsumrecl φn=Y+1KYE1n+1
276 90 nnrpd φnY+1KYn+
277 1 pntrf R:+
278 277 ffvelcdmi n+Rn
279 276 278 syl φnY+1KYRn
280 90 91 nnmulcld φnY+1KYnn+1
281 279 280 nndivred φnY+1KYRnnn+1
282 281 recnd φnY+1KYRnnn+1
283 282 abscld φnY+1KYRnnn+1
284 67 283 fsumrecl φn=Y+1KYRnnn+1
285 279 90 nndivred φnY+1KYRnn
286 285 recnd φnY+1KYRnn
287 286 abscld φnY+1KYRnn
288 91 nnrpd φnY+1KYn+1+
289 9 adantr φnY+1KY¬yY<yyKYRyyE
290 elfzle1 nY+1KYY+1n
291 290 adantl φnY+1KYY+1n
292 69 adantr φnY+1KYY
293 292 flcld φnY+1KYY
294 90 nnzd φnY+1KYn
295 zltp1le YnY<nY+1n
296 293 294 295 syl2anc φnY+1KYY<nY+1n
297 291 296 mpbird φnY+1KYY<n
298 fllt YnY<nY<n
299 292 294 298 syl2anc φnY+1KYY<nY<n
300 297 299 mpbird φnY+1KYY<n
301 elfzle2 nY+1KYnKY
302 301 adantl φnY+1KYnKY
303 114 adantr φnY+1KYKY
304 flge KYnnKYnKY
305 303 294 304 syl2anc φnY+1KYnKYnKY
306 302 305 mpbird φnY+1KYnKY
307 breq2 y=nY<yY<n
308 breq1 y=nyKYnKY
309 307 308 anbi12d y=nY<yyKYY<nnKY
310 fveq2 y=nRy=Rn
311 id y=ny=n
312 310 311 oveq12d y=nRyy=Rnn
313 312 fveq2d y=nRyy=Rnn
314 313 breq1d y=nRyyERnnE
315 309 314 anbi12d y=nY<yyKYRyyEY<nnKYRnnE
316 315 rspcev nY<nnKYRnnEyY<yyKYRyyE
317 316 expr nY<nnKYRnnEyY<yyKYRyyE
318 90 300 306 317 syl12anc φnY+1KYRnnEyY<yyKYRyyE
319 289 318 mtod φnY+1KY¬RnnE
320 287 268 letrid φnY+1KYRnnEERnn
321 320 ord φnY+1KY¬RnnEERnn
322 319 321 mpd φnY+1KYERnn
323 268 287 288 322 lediv1dd φnY+1KYEn+1Rnnn+1
324 286 270 271 absdivd φnY+1KYRnnn+1=Rnnn+1
325 279 recnd φnY+1KYRn
326 90 nncnd φnY+1KYn
327 90 nnne0d φnY+1KYn0
328 325 326 270 327 271 divdiv1d φnY+1KYRnnn+1=Rnnn+1
329 328 fveq2d φnY+1KYRnnn+1=Rnnn+1
330 288 rprege0d φnY+1KYn+10n+1
331 absid n+10n+1n+1=n+1
332 330 331 syl φnY+1KYn+1=n+1
333 332 oveq2d φnY+1KYRnnn+1=Rnnn+1
334 324 329 333 3eqtr3rd φnY+1KYRnnn+1=Rnnn+1
335 323 272 334 3brtr3d φnY+1KYE1n+1Rnnn+1
336 67 274 283 335 fsumle φn=Y+1KYE1n+1n=Y+1KYRnnn+1
337 1 2 3 4 5 6 7 8 9 pntpbnd1 φn=Y+1KYRnnn+1A
338 275 284 38 336 337 letrd φn=Y+1KYE1n+1A
339 267 338 eqbrtrd φEn=Y+1KY1n+1A
340 93 38 18 lemuldiv2d φEn=Y+1KY1n+1An=Y+1KY1n+1AE
341 339 340 mpbid φn=Y+1KY1n+1AE
342 60 93 39 265 341 letrd φlogK2AE
343 41 60 39 66 342 letrd φCE2AE
344 37 12 39 343 subled φCEAE2
345 35 344 eqbrtrd φ2E2
346 12 18 20 345 lediv23d φ22E
347 10 346 eqbrtrrid φ1E
348 16 simprd φE<1
349 ltnle E1E<1¬1E
350 14 48 349 sylancl φE<1¬1E
351 348 350 mpbid φ¬1E
352 347 351 pm2.65i ¬φ