Metamath Proof Explorer


Theorem relogmuld

Description: The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of Cohen p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogcld.1 φA+
relogmuld.2 φB+
Assertion relogmuld φlogAB=logA+logB

Proof

Step Hyp Ref Expression
1 relogcld.1 φA+
2 relogmuld.2 φB+
3 relogmul A+B+logAB=logA+logB
4 1 2 3 syl2anc φlogAB=logA+logB