| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntpbnd.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntpbnd1.e | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 (,) 1 ) ) | 
						
							| 3 |  | pntpbnd1.x | ⊢ 𝑋  =  ( exp ‘ ( 2  /  𝐸 ) ) | 
						
							| 4 |  | pntpbnd1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 (,) +∞ ) ) | 
						
							| 5 |  | pntpbnd1.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 6 |  | pntpbnd1.2 | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ ∀ 𝑗  ∈  ℤ ( abs ‘ Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) ) )  ≤  𝐴 ) | 
						
							| 7 |  | pntpbnd1.c | ⊢ 𝐶  =  ( 𝐴  +  2 ) | 
						
							| 8 |  | pntpbnd1.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ ) ) | 
						
							| 9 |  | pntpbnd1.3 | ⊢ ( 𝜑  →  ¬  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 10 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 11 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 13 |  | ioossre | ⊢ ( 0 (,) 1 )  ⊆  ℝ | 
						
							| 14 | 13 2 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 15 |  | eliooord | ⊢ ( 𝐸  ∈  ( 0 (,) 1 )  →  ( 0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 16 | 2 15 | syl | ⊢ ( 𝜑  →  ( 0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 18 | 14 17 | elrpd | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 19 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ+ ) | 
						
							| 21 | 7 | oveq1i | ⊢ ( 𝐶  −  𝐴 )  =  ( ( 𝐴  +  2 )  −  𝐴 ) | 
						
							| 22 | 5 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 23 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 24 |  | pncan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 𝐴  +  2 )  −  𝐴 )  =  2 ) | 
						
							| 25 | 22 23 24 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐴  +  2 )  −  𝐴 )  =  2 ) | 
						
							| 26 | 21 25 | eqtrid | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  2 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐶  −  𝐴 )  /  𝐸 )  =  ( 2  /  𝐸 ) ) | 
						
							| 28 |  | rpaddcl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  2  ∈  ℝ+ )  →  ( 𝐴  +  2 )  ∈  ℝ+ ) | 
						
							| 29 | 5 19 28 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  +  2 )  ∈  ℝ+ ) | 
						
							| 30 | 7 29 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 31 | 30 | rpcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 32 | 14 | recnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 33 | 18 | rpne0d | ⊢ ( 𝜑  →  𝐸  ≠  0 ) | 
						
							| 34 | 31 22 32 33 | divsubdird | ⊢ ( 𝜑  →  ( ( 𝐶  −  𝐴 )  /  𝐸 )  =  ( ( 𝐶  /  𝐸 )  −  ( 𝐴  /  𝐸 ) ) ) | 
						
							| 35 | 27 34 | eqtr3d | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  =  ( ( 𝐶  /  𝐸 )  −  ( 𝐴  /  𝐸 ) ) ) | 
						
							| 36 | 30 18 | rpdivcld | ⊢ ( 𝜑  →  ( 𝐶  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 37 | 36 | rpred | ⊢ ( 𝜑  →  ( 𝐶  /  𝐸 )  ∈  ℝ ) | 
						
							| 38 | 5 | rpred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 39 | 38 18 | rerpdivcld | ⊢ ( 𝜑  →  ( 𝐴  /  𝐸 )  ∈  ℝ ) | 
						
							| 40 |  | resubcl | ⊢ ( ( ( 𝐶  /  𝐸 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( 𝐶  /  𝐸 )  −  2 )  ∈  ℝ ) | 
						
							| 41 | 37 11 40 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐶  /  𝐸 )  −  2 )  ∈  ℝ ) | 
						
							| 42 | 37 | reefcld | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐶  /  𝐸 ) )  ∈  ℝ ) | 
						
							| 43 |  | elicopnf | ⊢ ( ( exp ‘ ( 𝐶  /  𝐸 ) )  ∈  ℝ  →  ( 𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ )  ↔  ( 𝐾  ∈  ℝ  ∧  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ )  ↔  ( 𝐾  ∈  ℝ  ∧  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) ) ) | 
						
							| 45 | 8 44 | mpbid | ⊢ ( 𝜑  →  ( 𝐾  ∈  ℝ  ∧  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) ) | 
						
							| 46 | 45 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 47 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 48 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 50 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 51 | 50 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 52 |  | efgt1 | ⊢ ( ( 𝐶  /  𝐸 )  ∈  ℝ+  →  1  <  ( exp ‘ ( 𝐶  /  𝐸 ) ) ) | 
						
							| 53 | 36 52 | syl | ⊢ ( 𝜑  →  1  <  ( exp ‘ ( 𝐶  /  𝐸 ) ) ) | 
						
							| 54 | 45 | simprd | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) | 
						
							| 55 | 49 42 46 53 54 | ltletrd | ⊢ ( 𝜑  →  1  <  𝐾 ) | 
						
							| 56 | 47 49 46 51 55 | lttrd | ⊢ ( 𝜑  →  0  <  𝐾 ) | 
						
							| 57 | 46 56 | elrpd | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 58 | 57 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐾 )  ∈  ℝ ) | 
						
							| 59 |  | resubcl | ⊢ ( ( ( log ‘ 𝐾 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( log ‘ 𝐾 )  −  2 )  ∈  ℝ ) | 
						
							| 60 | 58 11 59 | sylancl | ⊢ ( 𝜑  →  ( ( log ‘ 𝐾 )  −  2 )  ∈  ℝ ) | 
						
							| 61 | 57 | reeflogd | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 62 | 54 61 | breqtrrd | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  ( exp ‘ ( log ‘ 𝐾 ) ) ) | 
						
							| 63 |  | efle | ⊢ ( ( ( 𝐶  /  𝐸 )  ∈  ℝ  ∧  ( log ‘ 𝐾 )  ∈  ℝ )  →  ( ( 𝐶  /  𝐸 )  ≤  ( log ‘ 𝐾 )  ↔  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  ( exp ‘ ( log ‘ 𝐾 ) ) ) ) | 
						
							| 64 | 37 58 63 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐶  /  𝐸 )  ≤  ( log ‘ 𝐾 )  ↔  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  ( exp ‘ ( log ‘ 𝐾 ) ) ) ) | 
						
							| 65 | 62 64 | mpbird | ⊢ ( 𝜑  →  ( 𝐶  /  𝐸 )  ≤  ( log ‘ 𝐾 ) ) | 
						
							| 66 | 37 58 12 65 | lesub1dd | ⊢ ( 𝜑  →  ( ( 𝐶  /  𝐸 )  −  2 )  ≤  ( ( log ‘ 𝐾 )  −  2 ) ) | 
						
							| 67 |  | fzfid | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ∈  Fin ) | 
						
							| 68 |  | ioossre | ⊢ ( 𝑋 (,) +∞ )  ⊆  ℝ | 
						
							| 69 | 68 4 | sselid | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 70 |  | rerpdivcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐸  ∈  ℝ+ )  →  ( 2  /  𝐸 )  ∈  ℝ ) | 
						
							| 71 | 11 18 70 | sylancr | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ∈  ℝ ) | 
						
							| 72 | 71 | reefcld | ⊢ ( 𝜑  →  ( exp ‘ ( 2  /  𝐸 ) )  ∈  ℝ ) | 
						
							| 73 | 3 72 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 74 |  | efgt0 | ⊢ ( ( 2  /  𝐸 )  ∈  ℝ  →  0  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 75 | 71 74 | syl | ⊢ ( 𝜑  →  0  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 76 | 75 3 | breqtrrdi | ⊢ ( 𝜑  →  0  <  𝑋 ) | 
						
							| 77 | 73 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 78 |  | elioopnf | ⊢ ( 𝑋  ∈  ℝ*  →  ( 𝑌  ∈  ( 𝑋 (,) +∞ )  ↔  ( 𝑌  ∈  ℝ  ∧  𝑋  <  𝑌 ) ) ) | 
						
							| 79 | 77 78 | syl | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 (,) +∞ )  ↔  ( 𝑌  ∈  ℝ  ∧  𝑋  <  𝑌 ) ) ) | 
						
							| 80 | 4 79 | mpbid | ⊢ ( 𝜑  →  ( 𝑌  ∈  ℝ  ∧  𝑋  <  𝑌 ) ) | 
						
							| 81 | 80 | simprd | ⊢ ( 𝜑  →  𝑋  <  𝑌 ) | 
						
							| 82 | 47 73 69 76 81 | lttrd | ⊢ ( 𝜑  →  0  <  𝑌 ) | 
						
							| 83 | 47 69 82 | ltled | ⊢ ( 𝜑  →  0  ≤  𝑌 ) | 
						
							| 84 |  | flge0nn0 | ⊢ ( ( 𝑌  ∈  ℝ  ∧  0  ≤  𝑌 )  →  ( ⌊ ‘ 𝑌 )  ∈  ℕ0 ) | 
						
							| 85 | 69 83 84 | syl2anc | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ℕ0 ) | 
						
							| 86 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ℕ0  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ ) | 
						
							| 87 | 85 86 | syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ ) | 
						
							| 88 |  | elfzuz | ⊢ ( 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 89 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 90 | 87 88 89 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 91 | 90 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 92 | 91 | nnrecred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 93 | 67 92 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 94 | 58 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 95 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 96 | 69 82 | elrpd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ+ ) | 
						
							| 97 | 96 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 98 | 97 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝑌 )  ∈  ℂ ) | 
						
							| 99 | 94 95 98 | pnpcan2d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) )  −  ( 2  +  ( log ‘ 𝑌 ) ) )  =  ( ( log ‘ 𝐾 )  −  2 ) ) | 
						
							| 100 | 57 96 | relogmuld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐾  ·  𝑌 ) )  =  ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 101 | 58 97 | readdcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 102 | 100 101 | eqeltrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℝ ) | 
						
							| 103 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( ⌊ ‘ 𝑌 ) )  ∈  Fin ) | 
						
							| 104 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 106 |  | nn0p1nn | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 108 | 107 | nnrecred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 109 | 103 108 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 110 | 109 93 | readdcld | ⊢ ( 𝜑  →  ( Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 111 |  | readdcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ 𝑌 )  ∈  ℝ )  →  ( 2  +  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 112 | 11 97 111 | sylancr | ⊢ ( 𝜑  →  ( 2  +  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 113 | 112 93 | readdcld | ⊢ ( 𝜑  →  ( ( 2  +  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 114 | 46 69 | remulcld | ⊢ ( 𝜑  →  ( 𝐾  ·  𝑌 )  ∈  ℝ ) | 
						
							| 115 | 69 | recnd | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 116 | 115 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝑌 )  =  𝑌 ) | 
						
							| 117 | 49 46 55 | ltled | ⊢ ( 𝜑  →  1  ≤  𝐾 ) | 
						
							| 118 |  | lemul1 | ⊢ ( ( 1  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  ( 𝑌  ∈  ℝ  ∧  0  <  𝑌 ) )  →  ( 1  ≤  𝐾  ↔  ( 1  ·  𝑌 )  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 119 | 49 46 69 82 118 | syl112anc | ⊢ ( 𝜑  →  ( 1  ≤  𝐾  ↔  ( 1  ·  𝑌 )  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 120 | 117 119 | mpbid | ⊢ ( 𝜑  →  ( 1  ·  𝑌 )  ≤  ( 𝐾  ·  𝑌 ) ) | 
						
							| 121 | 116 120 | eqbrtrrd | ⊢ ( 𝜑  →  𝑌  ≤  ( 𝐾  ·  𝑌 ) ) | 
						
							| 122 | 47 69 114 83 121 | letrd | ⊢ ( 𝜑  →  0  ≤  ( 𝐾  ·  𝑌 ) ) | 
						
							| 123 |  | flge0nn0 | ⊢ ( ( ( 𝐾  ·  𝑌 )  ∈  ℝ  ∧  0  ≤  ( 𝐾  ·  𝑌 ) )  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℕ0 ) | 
						
							| 124 | 114 122 123 | syl2anc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℕ0 ) | 
						
							| 125 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  ∈  ℕ ) | 
						
							| 126 | 124 125 | syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  ∈  ℕ ) | 
						
							| 127 | 126 | nnrpd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  ∈  ℝ+ ) | 
						
							| 128 | 127 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 129 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 130 | 114 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℤ ) | 
						
							| 131 | 130 | peano2zd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  ∈  ℤ ) | 
						
							| 132 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 134 |  | nnrecre | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 135 | 134 | recnd | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℂ ) | 
						
							| 136 | 133 135 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  →  ( 1  /  𝑘 )  ∈  ℂ ) | 
						
							| 137 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 1  /  𝑘 )  =  ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 138 | 129 129 131 136 137 | fsumshftm | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  =  Σ 𝑛  ∈  ( ( 1  −  1 ) ... ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  −  1 ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 139 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 140 | 139 | a1i | ⊢ ( 𝜑  →  ( 1  −  1 )  =  0 ) | 
						
							| 141 | 130 | zcnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℂ ) | 
						
							| 142 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 143 |  | pncan | ⊢ ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  −  1 )  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 144 | 141 142 143 | sylancl | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  −  1 )  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 145 | 140 144 | oveq12d | ⊢ ( 𝜑  →  ( ( 1  −  1 ) ... ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  −  1 ) )  =  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 146 | 145 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( 1  −  1 ) ... ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  −  1 ) ) ( 1  /  ( 𝑛  +  1 ) )  =  Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 147 |  | reflcl | ⊢ ( 𝑌  ∈  ℝ  →  ( ⌊ ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 148 | 69 147 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 149 | 148 | ltp1d | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  <  ( ( ⌊ ‘ 𝑌 )  +  1 ) ) | 
						
							| 150 |  | fzdisj | ⊢ ( ( ⌊ ‘ 𝑌 )  <  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( ( 0 ... ( ⌊ ‘ 𝑌 ) )  ∩  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  =  ∅ ) | 
						
							| 151 | 149 150 | syl | ⊢ ( 𝜑  →  ( ( 0 ... ( ⌊ ‘ 𝑌 ) )  ∩  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  =  ∅ ) | 
						
							| 152 |  | flwordi | ⊢ ( ( 𝑌  ∈  ℝ  ∧  ( 𝐾  ·  𝑌 )  ∈  ℝ  ∧  𝑌  ≤  ( 𝐾  ·  𝑌 ) )  →  ( ⌊ ‘ 𝑌 )  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 153 | 69 114 121 152 | syl3anc | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 154 |  | elfz2nn0 | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ↔  ( ( ⌊ ‘ 𝑌 )  ∈  ℕ0  ∧  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℕ0  ∧  ( ⌊ ‘ 𝑌 )  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 155 | 85 124 153 154 | syl3anbrc | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 156 |  | fzsplit | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  =  ( ( 0 ... ( ⌊ ‘ 𝑌 ) )  ∪  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) | 
						
							| 157 | 155 156 | syl | ⊢ ( 𝜑  →  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  =  ( ( 0 ... ( ⌊ ‘ 𝑌 ) )  ∪  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) | 
						
							| 158 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ∈  Fin ) | 
						
							| 159 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 161 | 160 106 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 162 | 161 | nnrecred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 163 | 162 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℂ ) | 
						
							| 164 | 151 157 158 163 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) )  =  ( Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 165 | 138 146 164 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  =  ( Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 166 | 165 110 | eqeltrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 167 |  | fllep1 | ⊢ ( ( 𝐾  ·  𝑌 )  ∈  ℝ  →  ( 𝐾  ·  𝑌 )  ≤  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) | 
						
							| 168 | 114 167 | syl | ⊢ ( 𝜑  →  ( 𝐾  ·  𝑌 )  ≤  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) | 
						
							| 169 | 57 96 | rpmulcld | ⊢ ( 𝜑  →  ( 𝐾  ·  𝑌 )  ∈  ℝ+ ) | 
						
							| 170 | 169 127 | logled | ⊢ ( 𝜑  →  ( ( 𝐾  ·  𝑌 )  ≤  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  ↔  ( log ‘ ( 𝐾  ·  𝑌 ) )  ≤  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ) ) | 
						
							| 171 | 168 170 | mpbid | ⊢ ( 𝜑  →  ( log ‘ ( 𝐾  ·  𝑌 ) )  ≤  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ) | 
						
							| 172 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 173 | 172 | a1i | ⊢ ( 𝜑  →  γ  ∈  ℝ ) | 
						
							| 174 | 166 128 | resubcld | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 175 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 176 |  | emgt0 | ⊢ 0  <  γ | 
						
							| 177 | 175 172 176 | ltleii | ⊢ 0  ≤  γ | 
						
							| 178 | 177 | a1i | ⊢ ( 𝜑  →  0  ≤  γ ) | 
						
							| 179 |  | harmonicbnd | ⊢ ( ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 )  ∈  ℕ  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∈  ( γ [,] 1 ) ) | 
						
							| 180 | 126 179 | syl | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∈  ( γ [,] 1 ) ) | 
						
							| 181 | 172 48 | elicc2i | ⊢ ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∈  ( γ [,] 1 )  ↔  ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∈  ℝ  ∧  γ  ≤  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∧  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ≤  1 ) ) | 
						
							| 182 | 181 | simp2bi | ⊢ ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ∈  ( γ [,] 1 )  →  γ  ≤  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ) ) | 
						
							| 183 | 180 182 | syl | ⊢ ( 𝜑  →  γ  ≤  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ) ) | 
						
							| 184 | 47 173 174 178 183 | letrd | ⊢ ( 𝜑  →  0  ≤  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ) ) | 
						
							| 185 | 166 128 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) )  ↔  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) )  ≤  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 ) ) ) | 
						
							| 186 | 184 185 | mpbid | ⊢ ( 𝜑  →  ( log ‘ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) )  ≤  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 ) ) | 
						
							| 187 | 102 128 166 171 186 | letrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐾  ·  𝑌 ) )  ≤  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  +  1 ) ) ( 1  /  𝑘 ) ) | 
						
							| 188 | 187 165 | breqtrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐾  ·  𝑌 ) )  ≤  ( Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 189 | 69 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ℤ ) | 
						
							| 190 | 189 | peano2zd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℤ ) | 
						
							| 191 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 192 | 191 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 193 | 192 135 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  →  ( 1  /  𝑘 )  ∈  ℂ ) | 
						
							| 194 | 129 129 190 193 137 | fsumshftm | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  =  Σ 𝑛  ∈  ( ( 1  −  1 ) ... ( ( ( ⌊ ‘ 𝑌 )  +  1 )  −  1 ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 195 | 148 | recnd | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ℂ ) | 
						
							| 196 |  | pncan | ⊢ ( ( ( ⌊ ‘ 𝑌 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 )  −  1 )  =  ( ⌊ ‘ 𝑌 ) ) | 
						
							| 197 | 195 142 196 | sylancl | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 )  −  1 )  =  ( ⌊ ‘ 𝑌 ) ) | 
						
							| 198 | 140 197 | oveq12d | ⊢ ( 𝜑  →  ( ( 1  −  1 ) ... ( ( ( ⌊ ‘ 𝑌 )  +  1 )  −  1 ) )  =  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 199 | 198 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( 1  −  1 ) ... ( ( ( ⌊ ‘ 𝑌 )  +  1 )  −  1 ) ) ( 1  /  ( 𝑛  +  1 ) )  =  Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 200 | 194 199 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  =  Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 201 | 200 109 | eqeltrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 202 | 87 | nnrpd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ+ ) | 
						
							| 203 | 202 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∈  ℝ ) | 
						
							| 204 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∈  ℝ )  →  ( 1  +  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 205 | 48 203 204 | sylancr | ⊢ ( 𝜑  →  ( 1  +  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 206 |  | harmonicbnd | ⊢ ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ( γ [,] 1 ) ) | 
						
							| 207 | 87 206 | syl | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ( γ [,] 1 ) ) | 
						
							| 208 | 172 48 | elicc2i | ⊢ ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ( γ [,] 1 )  ↔  ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ℝ  ∧  γ  ≤  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∧  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ≤  1 ) ) | 
						
							| 209 | 208 | simp3bi | ⊢ ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ∈  ( γ [,] 1 )  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ≤  1 ) | 
						
							| 210 | 207 209 | syl | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ≤  1 ) | 
						
							| 211 | 201 203 49 | lesubaddd | ⊢ ( 𝜑  →  ( ( Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  −  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ≤  1  ↔  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  ≤  ( 1  +  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) ) ) | 
						
							| 212 | 210 211 | mpbid | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  ≤  ( 1  +  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) ) | 
						
							| 213 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( log ‘ 𝑌 )  ∈  ℝ )  →  ( 1  +  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 214 | 48 97 213 | sylancr | ⊢ ( 𝜑  →  ( 1  +  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 215 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ ) | 
						
							| 216 | 148 215 | syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ ) | 
						
							| 217 | 12 69 | remulcld | ⊢ ( 𝜑  →  ( 2  ·  𝑌 )  ∈  ℝ ) | 
						
							| 218 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 219 |  | rpmulcl | ⊢ ( ( e  ∈  ℝ+  ∧  𝑌  ∈  ℝ+ )  →  ( e  ·  𝑌 )  ∈  ℝ+ ) | 
						
							| 220 | 218 96 219 | sylancr | ⊢ ( 𝜑  →  ( e  ·  𝑌 )  ∈  ℝ+ ) | 
						
							| 221 | 220 | rpred | ⊢ ( 𝜑  →  ( e  ·  𝑌 )  ∈  ℝ ) | 
						
							| 222 |  | flle | ⊢ ( 𝑌  ∈  ℝ  →  ( ⌊ ‘ 𝑌 )  ≤  𝑌 ) | 
						
							| 223 | 69 222 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ≤  𝑌 ) | 
						
							| 224 | 20 18 | rpdivcld | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 225 |  | efgt1 | ⊢ ( ( 2  /  𝐸 )  ∈  ℝ+  →  1  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 226 | 224 225 | syl | ⊢ ( 𝜑  →  1  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 227 | 226 3 | breqtrrdi | ⊢ ( 𝜑  →  1  <  𝑋 ) | 
						
							| 228 | 49 73 69 227 81 | lttrd | ⊢ ( 𝜑  →  1  <  𝑌 ) | 
						
							| 229 | 49 69 228 | ltled | ⊢ ( 𝜑  →  1  ≤  𝑌 ) | 
						
							| 230 | 148 49 69 69 223 229 | le2addd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( 𝑌  +  𝑌 ) ) | 
						
							| 231 | 115 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑌 )  =  ( 𝑌  +  𝑌 ) ) | 
						
							| 232 | 230 231 | breqtrrd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( 2  ·  𝑌 ) ) | 
						
							| 233 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 234 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 235 | 234 | simpli | ⊢ 2  <  e | 
						
							| 236 | 11 233 235 | ltleii | ⊢ 2  ≤  e | 
						
							| 237 | 236 | a1i | ⊢ ( 𝜑  →  2  ≤  e ) | 
						
							| 238 | 233 | a1i | ⊢ ( 𝜑  →  e  ∈  ℝ ) | 
						
							| 239 |  | lemul1 | ⊢ ( ( 2  ∈  ℝ  ∧  e  ∈  ℝ  ∧  ( 𝑌  ∈  ℝ  ∧  0  <  𝑌 ) )  →  ( 2  ≤  e  ↔  ( 2  ·  𝑌 )  ≤  ( e  ·  𝑌 ) ) ) | 
						
							| 240 | 12 238 69 82 239 | syl112anc | ⊢ ( 𝜑  →  ( 2  ≤  e  ↔  ( 2  ·  𝑌 )  ≤  ( e  ·  𝑌 ) ) ) | 
						
							| 241 | 237 240 | mpbid | ⊢ ( 𝜑  →  ( 2  ·  𝑌 )  ≤  ( e  ·  𝑌 ) ) | 
						
							| 242 | 216 217 221 232 241 | letrd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( e  ·  𝑌 ) ) | 
						
							| 243 | 202 220 | logled | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( e  ·  𝑌 )  ↔  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  ( log ‘ ( e  ·  𝑌 ) ) ) ) | 
						
							| 244 | 242 243 | mpbid | ⊢ ( 𝜑  →  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  ( log ‘ ( e  ·  𝑌 ) ) ) | 
						
							| 245 |  | relogmul | ⊢ ( ( e  ∈  ℝ+  ∧  𝑌  ∈  ℝ+ )  →  ( log ‘ ( e  ·  𝑌 ) )  =  ( ( log ‘ e )  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 246 | 218 96 245 | sylancr | ⊢ ( 𝜑  →  ( log ‘ ( e  ·  𝑌 ) )  =  ( ( log ‘ e )  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 247 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 248 | 247 | oveq1i | ⊢ ( ( log ‘ e )  +  ( log ‘ 𝑌 ) )  =  ( 1  +  ( log ‘ 𝑌 ) ) | 
						
							| 249 | 246 248 | eqtrdi | ⊢ ( 𝜑  →  ( log ‘ ( e  ·  𝑌 ) )  =  ( 1  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 250 | 244 249 | breqtrd | ⊢ ( 𝜑  →  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  ( 1  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 251 | 203 214 49 250 | leadd2dd | ⊢ ( 𝜑  →  ( 1  +  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ≤  ( 1  +  ( 1  +  ( log ‘ 𝑌 ) ) ) ) | 
						
							| 252 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 253 | 252 | oveq1i | ⊢ ( 2  +  ( log ‘ 𝑌 ) )  =  ( ( 1  +  1 )  +  ( log ‘ 𝑌 ) ) | 
						
							| 254 | 142 | a1i | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 255 | 254 254 98 | addassd | ⊢ ( 𝜑  →  ( ( 1  +  1 )  +  ( log ‘ 𝑌 ) )  =  ( 1  +  ( 1  +  ( log ‘ 𝑌 ) ) ) ) | 
						
							| 256 | 253 255 | eqtrid | ⊢ ( 𝜑  →  ( 2  +  ( log ‘ 𝑌 ) )  =  ( 1  +  ( 1  +  ( log ‘ 𝑌 ) ) ) ) | 
						
							| 257 | 251 256 | breqtrrd | ⊢ ( 𝜑  →  ( 1  +  ( log ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  ≤  ( 2  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 258 | 201 205 112 212 257 | letrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 1 ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ( 1  /  𝑘 )  ≤  ( 2  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 259 | 200 258 | eqbrtrrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 2  +  ( log ‘ 𝑌 ) ) ) | 
						
							| 260 | 109 112 93 259 | leadd1dd | ⊢ ( 𝜑  →  ( Σ 𝑛  ∈  ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1  /  ( 𝑛  +  1 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) )  ≤  ( ( 2  +  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 261 | 102 110 113 188 260 | letrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐾  ·  𝑌 ) )  ≤  ( ( 2  +  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 262 | 100 261 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) )  ≤  ( ( 2  +  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 263 | 101 112 93 | lesubadd2d | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) )  −  ( 2  +  ( log ‘ 𝑌 ) ) )  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) )  ↔  ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) )  ≤  ( ( 2  +  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 264 | 262 263 | mpbird | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝐾 )  +  ( log ‘ 𝑌 ) )  −  ( 2  +  ( log ‘ 𝑌 ) ) )  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 265 | 99 264 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐾 )  −  2 )  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 266 | 92 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℂ ) | 
						
							| 267 | 67 32 266 | fsummulc2 | ⊢ ( 𝜑  →  ( 𝐸  ·  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 268 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝐸  ∈  ℝ ) | 
						
							| 269 | 268 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝐸  ∈  ℂ ) | 
						
							| 270 | 91 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℂ ) | 
						
							| 271 | 91 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 272 | 269 270 271 | divrecd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝐸  /  ( 𝑛  +  1 ) )  =  ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 273 | 268 91 | nndivred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝐸  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 274 | 272 273 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 275 | 67 274 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 276 | 90 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 277 | 1 | pntrf | ⊢ 𝑅 : ℝ+ ⟶ ℝ | 
						
							| 278 | 277 | ffvelcdmi | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 279 | 276 278 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 280 | 90 91 | nnmulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 281 | 279 280 | nndivred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 282 | 281 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 283 | 282 | abscld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 284 | 67 283 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 285 | 279 90 | nndivred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 286 | 285 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 287 | 286 | abscld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 288 | 91 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 289 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ¬  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 290 |  | elfzle1 | ⊢ ( 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑛 ) | 
						
							| 291 | 290 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑛 ) | 
						
							| 292 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑌  ∈  ℝ ) | 
						
							| 293 | 292 | flcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ⌊ ‘ 𝑌 )  ∈  ℤ ) | 
						
							| 294 | 90 | nnzd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 295 |  | zltp1le | ⊢ ( ( ( ⌊ ‘ 𝑌 )  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( ( ⌊ ‘ 𝑌 )  <  𝑛  ↔  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑛 ) ) | 
						
							| 296 | 293 294 295 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ⌊ ‘ 𝑌 )  <  𝑛  ↔  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑛 ) ) | 
						
							| 297 | 291 296 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ⌊ ‘ 𝑌 )  <  𝑛 ) | 
						
							| 298 |  | fllt | ⊢ ( ( 𝑌  ∈  ℝ  ∧  𝑛  ∈  ℤ )  →  ( 𝑌  <  𝑛  ↔  ( ⌊ ‘ 𝑌 )  <  𝑛 ) ) | 
						
							| 299 | 292 294 298 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑌  <  𝑛  ↔  ( ⌊ ‘ 𝑌 )  <  𝑛 ) ) | 
						
							| 300 | 297 299 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑌  <  𝑛 ) | 
						
							| 301 |  | elfzle2 | ⊢ ( 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑛  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 302 | 301 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 303 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝐾  ·  𝑌 )  ∈  ℝ ) | 
						
							| 304 |  | flge | ⊢ ( ( ( 𝐾  ·  𝑌 )  ∈  ℝ  ∧  𝑛  ∈  ℤ )  →  ( 𝑛  ≤  ( 𝐾  ·  𝑌 )  ↔  𝑛  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 305 | 303 294 304 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ≤  ( 𝐾  ·  𝑌 )  ↔  𝑛  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 306 | 302 305 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ≤  ( 𝐾  ·  𝑌 ) ) | 
						
							| 307 |  | breq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑌  <  𝑦  ↔  𝑌  <  𝑛 ) ) | 
						
							| 308 |  | breq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  ≤  ( 𝐾  ·  𝑌 )  ↔  𝑛  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 309 | 307 308 | anbi12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ↔  ( 𝑌  <  𝑛  ∧  𝑛  ≤  ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 310 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 311 |  | id | ⊢ ( 𝑦  =  𝑛  →  𝑦  =  𝑛 ) | 
						
							| 312 | 310 311 | oveq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑅 ‘ 𝑦 )  /  𝑦 )  =  ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 313 | 312 | fveq2d | ⊢ ( 𝑦  =  𝑛  →  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  =  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 314 | 313 | breq1d | ⊢ ( 𝑦  =  𝑛  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸  ↔  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸 ) ) | 
						
							| 315 | 309 314 | anbi12d | ⊢ ( 𝑦  =  𝑛  →  ( ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 )  ↔  ( ( 𝑌  <  𝑛  ∧  𝑛  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸 ) ) ) | 
						
							| 316 | 315 | rspcev | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 𝑌  <  𝑛  ∧  𝑛  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸 ) )  →  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 317 | 316 | expr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑌  <  𝑛  ∧  𝑛  ≤  ( 𝐾  ·  𝑌 ) ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸  →  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) ) | 
						
							| 318 | 90 300 306 317 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸  →  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) ) | 
						
							| 319 | 289 318 | mtod | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ¬  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸 ) | 
						
							| 320 | 287 268 | letrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸  ∨  𝐸  ≤  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) ) ) ) | 
						
							| 321 | 320 | ord | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ¬  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  ≤  𝐸  →  𝐸  ≤  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) ) ) ) | 
						
							| 322 | 319 321 | mpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝐸  ≤  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 323 | 268 287 288 322 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝐸  /  ( 𝑛  +  1 ) )  ≤  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  /  ( 𝑛  +  1 ) ) ) | 
						
							| 324 | 286 270 271 | absdivd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( ( ( 𝑅 ‘ 𝑛 )  /  𝑛 )  /  ( 𝑛  +  1 ) ) )  =  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  /  ( abs ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 325 | 279 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 326 | 90 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 327 | 90 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ≠  0 ) | 
						
							| 328 | 325 326 270 327 271 | divdiv1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ( 𝑅 ‘ 𝑛 )  /  𝑛 )  /  ( 𝑛  +  1 ) )  =  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 329 | 328 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( ( ( 𝑅 ‘ 𝑛 )  /  𝑛 )  /  ( 𝑛  +  1 ) ) )  =  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 330 | 288 | rprege0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑛  +  1 )  ∈  ℝ  ∧  0  ≤  ( 𝑛  +  1 ) ) ) | 
						
							| 331 |  | absid | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℝ  ∧  0  ≤  ( 𝑛  +  1 ) )  →  ( abs ‘ ( 𝑛  +  1 ) )  =  ( 𝑛  +  1 ) ) | 
						
							| 332 | 330 331 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( 𝑛  +  1 ) )  =  ( 𝑛  +  1 ) ) | 
						
							| 333 | 332 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  /  ( abs ‘ ( 𝑛  +  1 ) ) )  =  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  /  ( 𝑛  +  1 ) ) ) | 
						
							| 334 | 324 329 333 | 3eqtr3rd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  𝑛 ) )  /  ( 𝑛  +  1 ) )  =  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 335 | 323 272 334 | 3brtr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 336 | 67 274 283 335 | fsumle | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 337 | 1 2 3 4 5 6 7 8 9 | pntpbnd1 | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴 ) | 
						
							| 338 | 275 284 38 336 337 | letrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝐸  ·  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  𝐴 ) | 
						
							| 339 | 267 338 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐸  ·  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) )  ≤  𝐴 ) | 
						
							| 340 | 93 38 18 | lemuldiv2d | ⊢ ( 𝜑  →  ( ( 𝐸  ·  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) ) )  ≤  𝐴  ↔  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 𝐴  /  𝐸 ) ) ) | 
						
							| 341 | 339 340 | mpbid | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 𝐴  /  𝐸 ) ) | 
						
							| 342 | 60 93 39 265 341 | letrd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐾 )  −  2 )  ≤  ( 𝐴  /  𝐸 ) ) | 
						
							| 343 | 41 60 39 66 342 | letrd | ⊢ ( 𝜑  →  ( ( 𝐶  /  𝐸 )  −  2 )  ≤  ( 𝐴  /  𝐸 ) ) | 
						
							| 344 | 37 12 39 343 | subled | ⊢ ( 𝜑  →  ( ( 𝐶  /  𝐸 )  −  ( 𝐴  /  𝐸 ) )  ≤  2 ) | 
						
							| 345 | 35 344 | eqbrtrd | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ≤  2 ) | 
						
							| 346 | 12 18 20 345 | lediv23d | ⊢ ( 𝜑  →  ( 2  /  2 )  ≤  𝐸 ) | 
						
							| 347 | 10 346 | eqbrtrrid | ⊢ ( 𝜑  →  1  ≤  𝐸 ) | 
						
							| 348 | 16 | simprd | ⊢ ( 𝜑  →  𝐸  <  1 ) | 
						
							| 349 |  | ltnle | ⊢ ( ( 𝐸  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐸  <  1  ↔  ¬  1  ≤  𝐸 ) ) | 
						
							| 350 | 14 48 349 | sylancl | ⊢ ( 𝜑  →  ( 𝐸  <  1  ↔  ¬  1  ≤  𝐸 ) ) | 
						
							| 351 | 348 350 | mpbid | ⊢ ( 𝜑  →  ¬  1  ≤  𝐸 ) | 
						
							| 352 | 347 351 | pm2.65i | ⊢ ¬  𝜑 |