Step |
Hyp |
Ref |
Expression |
1 |
|
pntibnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
2 |
1
|
pntrsumbnd2 |
⊢ ∃ 𝑑 ∈ ℝ+ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 |
3 |
|
simpl |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) → 𝑑 ∈ ℝ+ ) |
4 |
|
2rp |
⊢ 2 ∈ ℝ+ |
5 |
|
rpaddcl |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( 𝑑 + 2 ) ∈ ℝ+ ) |
6 |
3 4 5
|
sylancl |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) → ( 𝑑 + 2 ) ∈ ℝ+ ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
|
elioore |
⊢ ( 𝑒 ∈ ( 0 (,) 1 ) → 𝑒 ∈ ℝ ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → 𝑒 ∈ ℝ ) |
10 |
|
eliooord |
⊢ ( 𝑒 ∈ ( 0 (,) 1 ) → ( 0 < 𝑒 ∧ 𝑒 < 1 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → ( 0 < 𝑒 ∧ 𝑒 < 1 ) ) |
12 |
11
|
simpld |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → 0 < 𝑒 ) |
13 |
9 12
|
elrpd |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → 𝑒 ∈ ℝ+ ) |
14 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) → ( 2 / 𝑒 ) ∈ ℝ ) |
15 |
7 13 14
|
sylancr |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → ( 2 / 𝑒 ) ∈ ℝ ) |
16 |
15
|
rpefcld |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( 2 / 𝑒 ) ) ∈ ℝ+ ) |
17 |
|
simpllr |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → 𝑒 ∈ ( 0 (,) 1 ) ) |
18 |
|
eqid |
⊢ ( exp ‘ ( 2 / 𝑒 ) ) = ( exp ‘ ( 2 / 𝑒 ) ) |
19 |
|
simplrr |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) |
20 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → 𝑑 ∈ ℝ+ ) |
21 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) |
22 |
|
eqid |
⊢ ( 𝑑 + 2 ) = ( 𝑑 + 2 ) |
23 |
|
simplrl |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ) |
24 |
|
simpr |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
25 |
1 17 18 19 20 21 22 23 24
|
pntpbnd2 |
⊢ ¬ ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
26 |
|
iman |
⊢ ( ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ↔ ¬ ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) ∧ ¬ ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ) |
27 |
25 26
|
mpbir |
⊢ ( ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∧ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
28 |
27
|
ralrimivva |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = ( exp ‘ ( 2 / 𝑒 ) ) → ( 𝑥 (,) +∞ ) = ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ) |
30 |
29
|
raleqdv |
⊢ ( 𝑥 = ( exp ‘ ( 2 / 𝑒 ) ) → ( ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ↔ ∀ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑥 = ( exp ‘ ( 2 / 𝑒 ) ) → ( ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ↔ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ) |
32 |
31
|
rspcev |
⊢ ( ( ( exp ‘ ( 2 / 𝑒 ) ) ∈ ℝ+ ∧ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( ( exp ‘ ( 2 / 𝑒 ) ) (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
33 |
16 28 32
|
syl2anc |
⊢ ( ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) ∧ 𝑒 ∈ ( 0 (,) 1 ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
34 |
33
|
ralrimiva |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) → ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
35 |
|
fvoveq1 |
⊢ ( 𝑐 = ( 𝑑 + 2 ) → ( exp ‘ ( 𝑐 / 𝑒 ) ) = ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑐 = ( 𝑑 + 2 ) → ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) = ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ) |
37 |
36
|
raleqdv |
⊢ ( 𝑐 = ( 𝑑 + 2 ) → ( ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ↔ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ) |
38 |
37
|
rexbidv |
⊢ ( 𝑐 = ( 𝑑 + 2 ) → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑐 = ( 𝑑 + 2 ) → ( ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ↔ ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) ) |
40 |
39
|
rspcev |
⊢ ( ( ( 𝑑 + 2 ) ∈ ℝ+ ∧ ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( ( 𝑑 + 2 ) / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) → ∃ 𝑐 ∈ ℝ+ ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
41 |
6 34 40
|
syl2anc |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 ) → ∃ 𝑐 ∈ ℝ+ ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
42 |
41
|
rexlimiva |
⊢ ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑑 → ∃ 𝑐 ∈ ℝ+ ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) ) |
43 |
2 42
|
ax-mp |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑒 ∈ ( 0 (,) 1 ) ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ ( ( exp ‘ ( 𝑐 / 𝑒 ) ) [,) +∞ ) ∀ 𝑦 ∈ ( 𝑥 (,) +∞ ) ∃ 𝑛 ∈ ℕ ( ( 𝑦 < 𝑛 ∧ 𝑛 ≤ ( 𝑘 · 𝑦 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝑒 ) |