| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntibnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
pntibndlem1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 3 |
|
pntibndlem1.l |
⊢ 𝐿 = ( ( 1 / 4 ) / ( 𝐴 + 3 ) ) |
| 4 |
|
4nn |
⊢ 4 ∈ ℕ |
| 5 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
| 6 |
|
rpreccl |
⊢ ( 4 ∈ ℝ+ → ( 1 / 4 ) ∈ ℝ+ ) |
| 7 |
4 5 6
|
mp2b |
⊢ ( 1 / 4 ) ∈ ℝ+ |
| 8 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 9 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 𝐴 + 3 ) ∈ ℝ+ ) |
| 10 |
2 8 9
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 3 ) ∈ ℝ+ ) |
| 11 |
|
rpdivcl |
⊢ ( ( ( 1 / 4 ) ∈ ℝ+ ∧ ( 𝐴 + 3 ) ∈ ℝ+ ) → ( ( 1 / 4 ) / ( 𝐴 + 3 ) ) ∈ ℝ+ ) |
| 12 |
7 10 11
|
sylancr |
⊢ ( 𝜑 → ( ( 1 / 4 ) / ( 𝐴 + 3 ) ) ∈ ℝ+ ) |
| 13 |
3 12
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ℝ+ ) |
| 14 |
13
|
rpred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 15 |
13
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐿 ) |
| 16 |
|
rpcn |
⊢ ( ( 1 / 4 ) ∈ ℝ+ → ( 1 / 4 ) ∈ ℂ ) |
| 17 |
7 16
|
ax-mp |
⊢ ( 1 / 4 ) ∈ ℂ |
| 18 |
17
|
div1i |
⊢ ( ( 1 / 4 ) / 1 ) = ( 1 / 4 ) |
| 19 |
|
rpre |
⊢ ( ( 1 / 4 ) ∈ ℝ+ → ( 1 / 4 ) ∈ ℝ ) |
| 20 |
7 19
|
mp1i |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ ) |
| 21 |
|
3re |
⊢ 3 ∈ ℝ |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 23 |
10
|
rpred |
⊢ ( 𝜑 → ( 𝐴 + 3 ) ∈ ℝ ) |
| 24 |
|
1lt4 |
⊢ 1 < 4 |
| 25 |
|
4re |
⊢ 4 ∈ ℝ |
| 26 |
|
4pos |
⊢ 0 < 4 |
| 27 |
|
recgt1 |
⊢ ( ( 4 ∈ ℝ ∧ 0 < 4 ) → ( 1 < 4 ↔ ( 1 / 4 ) < 1 ) ) |
| 28 |
25 26 27
|
mp2an |
⊢ ( 1 < 4 ↔ ( 1 / 4 ) < 1 ) |
| 29 |
24 28
|
mpbi |
⊢ ( 1 / 4 ) < 1 |
| 30 |
|
1lt3 |
⊢ 1 < 3 |
| 31 |
7 19
|
ax-mp |
⊢ ( 1 / 4 ) ∈ ℝ |
| 32 |
|
1re |
⊢ 1 ∈ ℝ |
| 33 |
31 32 21
|
lttri |
⊢ ( ( ( 1 / 4 ) < 1 ∧ 1 < 3 ) → ( 1 / 4 ) < 3 ) |
| 34 |
29 30 33
|
mp2an |
⊢ ( 1 / 4 ) < 3 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ( 1 / 4 ) < 3 ) |
| 36 |
|
ltaddrp |
⊢ ( ( 3 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 3 < ( 3 + 𝐴 ) ) |
| 37 |
21 2 36
|
sylancr |
⊢ ( 𝜑 → 3 < ( 3 + 𝐴 ) ) |
| 38 |
|
3cn |
⊢ 3 ∈ ℂ |
| 39 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 40 |
|
addcom |
⊢ ( ( 3 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 3 + 𝐴 ) = ( 𝐴 + 3 ) ) |
| 41 |
38 39 40
|
sylancr |
⊢ ( 𝜑 → ( 3 + 𝐴 ) = ( 𝐴 + 3 ) ) |
| 42 |
37 41
|
breqtrd |
⊢ ( 𝜑 → 3 < ( 𝐴 + 3 ) ) |
| 43 |
20 22 23 35 42
|
lttrd |
⊢ ( 𝜑 → ( 1 / 4 ) < ( 𝐴 + 3 ) ) |
| 44 |
18 43
|
eqbrtrid |
⊢ ( 𝜑 → ( ( 1 / 4 ) / 1 ) < ( 𝐴 + 3 ) ) |
| 45 |
32
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 46 |
|
0lt1 |
⊢ 0 < 1 |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 48 |
10
|
rpregt0d |
⊢ ( 𝜑 → ( ( 𝐴 + 3 ) ∈ ℝ ∧ 0 < ( 𝐴 + 3 ) ) ) |
| 49 |
|
ltdiv23 |
⊢ ( ( ( 1 / 4 ) ∈ ℝ ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( 𝐴 + 3 ) ∈ ℝ ∧ 0 < ( 𝐴 + 3 ) ) ) → ( ( ( 1 / 4 ) / 1 ) < ( 𝐴 + 3 ) ↔ ( ( 1 / 4 ) / ( 𝐴 + 3 ) ) < 1 ) ) |
| 50 |
20 45 47 48 49
|
syl121anc |
⊢ ( 𝜑 → ( ( ( 1 / 4 ) / 1 ) < ( 𝐴 + 3 ) ↔ ( ( 1 / 4 ) / ( 𝐴 + 3 ) ) < 1 ) ) |
| 51 |
44 50
|
mpbid |
⊢ ( 𝜑 → ( ( 1 / 4 ) / ( 𝐴 + 3 ) ) < 1 ) |
| 52 |
3 51
|
eqbrtrid |
⊢ ( 𝜑 → 𝐿 < 1 ) |
| 53 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 54 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 55 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝐿 ∈ ( 0 (,) 1 ) ↔ ( 𝐿 ∈ ℝ ∧ 0 < 𝐿 ∧ 𝐿 < 1 ) ) ) |
| 56 |
53 54 55
|
mp2an |
⊢ ( 𝐿 ∈ ( 0 (,) 1 ) ↔ ( 𝐿 ∈ ℝ ∧ 0 < 𝐿 ∧ 𝐿 < 1 ) ) |
| 57 |
14 15 52 56
|
syl3anbrc |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |