| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntpbnd.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntpbnd1.e | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 (,) 1 ) ) | 
						
							| 3 |  | pntpbnd1.x | ⊢ 𝑋  =  ( exp ‘ ( 2  /  𝐸 ) ) | 
						
							| 4 |  | pntpbnd1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 (,) +∞ ) ) | 
						
							| 5 |  | pntpbnd1.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 6 |  | pntpbnd1.2 | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ ∀ 𝑗  ∈  ℤ ( abs ‘ Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) ) )  ≤  𝐴 ) | 
						
							| 7 |  | pntpbnd1.c | ⊢ 𝐶  =  ( 𝐴  +  2 ) | 
						
							| 8 |  | pntpbnd1.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ ) ) | 
						
							| 9 |  | pntpbnd1.3 | ⊢ ( 𝜑  →  ¬  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 10 |  | fzfid | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ∈  Fin ) | 
						
							| 11 |  | ioossre | ⊢ ( 𝑋 (,) +∞ )  ⊆  ℝ | 
						
							| 12 | 11 4 | sselid | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 13 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 14 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 15 |  | ioossre | ⊢ ( 0 (,) 1 )  ⊆  ℝ | 
						
							| 16 | 15 2 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 17 |  | eliooord | ⊢ ( 𝐸  ∈  ( 0 (,) 1 )  →  ( 0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 18 | 2 17 | syl | ⊢ ( 𝜑  →  ( 0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 20 | 16 19 | elrpd | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 21 |  | rerpdivcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐸  ∈  ℝ+ )  →  ( 2  /  𝐸 )  ∈  ℝ ) | 
						
							| 22 | 14 20 21 | sylancr | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ∈  ℝ ) | 
						
							| 23 | 22 | reefcld | ⊢ ( 𝜑  →  ( exp ‘ ( 2  /  𝐸 ) )  ∈  ℝ ) | 
						
							| 24 | 3 23 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 25 |  | efgt0 | ⊢ ( ( 2  /  𝐸 )  ∈  ℝ  →  0  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 26 | 22 25 | syl | ⊢ ( 𝜑  →  0  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 27 | 26 3 | breqtrrdi | ⊢ ( 𝜑  →  0  <  𝑋 ) | 
						
							| 28 |  | eliooord | ⊢ ( 𝑌  ∈  ( 𝑋 (,) +∞ )  →  ( 𝑋  <  𝑌  ∧  𝑌  <  +∞ ) ) | 
						
							| 29 | 4 28 | syl | ⊢ ( 𝜑  →  ( 𝑋  <  𝑌  ∧  𝑌  <  +∞ ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( 𝜑  →  𝑋  <  𝑌 ) | 
						
							| 31 | 13 24 12 27 30 | lttrd | ⊢ ( 𝜑  →  0  <  𝑌 ) | 
						
							| 32 | 13 12 31 | ltled | ⊢ ( 𝜑  →  0  ≤  𝑌 ) | 
						
							| 33 |  | flge0nn0 | ⊢ ( ( 𝑌  ∈  ℝ  ∧  0  ≤  𝑌 )  →  ( ⌊ ‘ 𝑌 )  ∈  ℕ0 ) | 
						
							| 34 | 12 32 33 | syl2anc | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ℕ0 ) | 
						
							| 35 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ℕ0  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ ) | 
						
							| 37 |  | elfzuz | ⊢ ( 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 38 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 39 | 36 37 38 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 40 | 39 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 41 | 1 | pntrf | ⊢ 𝑅 : ℝ+ ⟶ ℝ | 
						
							| 42 | 41 | ffvelcdmi | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 43 | 40 42 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 44 | 39 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 45 | 39 44 | nnmulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 46 | 43 45 | nndivred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 48 | 10 47 | fsumrecl | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 49 | 43 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑖  =  𝑛  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 51 | 50 | breq2d | ⊢ ( 𝑖  =  𝑛  →  ( 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ 𝑛 ) ) ) | 
						
							| 52 | 51 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  ≤  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 53 | 52 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  ≤  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 54 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 55 | 54 | nnred | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 56 | 54 | nngt0d | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  <  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 57 |  | divge0 | ⊢ ( ( ( ( 𝑅 ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( 𝑅 ‘ 𝑛 ) )  ∧  ( ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℝ  ∧  0  <  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  →  0  ≤  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 58 | 49 53 55 56 57 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  ≤  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 59 | 10 47 58 | fsumge0 | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  →  0  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 60 | 48 59 | absidd | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 61 | 47 58 | absidd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 62 | 61 | sumeq2dv | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 63 | 60 62 | eqtr4d | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 64 |  | fzfid | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ∈  Fin ) | 
						
							| 65 | 46 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 66 | 65 | recnd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 67 | 64 66 | fsumneg | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  - Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 68 | 43 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 69 | 68 | renegcld | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  - ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 70 | 50 | breq1d | ⊢ ( 𝑖  =  𝑛  →  ( ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ 𝑛 )  ≤  0 ) ) | 
						
							| 71 | 70 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ≤  0 ) | 
						
							| 72 | 71 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ≤  0 ) | 
						
							| 73 | 68 | le0neg1d | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  ≤  0  ↔  0  ≤  - ( 𝑅 ‘ 𝑛 ) ) ) | 
						
							| 74 | 72 73 | mpbid | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  ≤  - ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 75 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 76 | 75 | nnred | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 77 | 75 | nngt0d | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  <  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 78 |  | divge0 | ⊢ ( ( ( - ( 𝑅 ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  - ( 𝑅 ‘ 𝑛 ) )  ∧  ( ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℝ  ∧  0  <  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  →  0  ≤  ( - ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 79 | 69 74 76 77 78 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  ≤  ( - ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 80 | 43 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 81 | 45 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℂ ) | 
						
							| 82 | 45 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ≠  0 ) | 
						
							| 83 | 80 81 82 | divnegd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  ( - ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 84 | 83 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  ( - ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 85 | 79 84 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  0  ≤  - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 86 | 65 | le0neg1d | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ≤  0  ↔  0  ≤  - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 87 | 85 86 | mpbird | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ≤  0 ) | 
						
							| 88 | 65 87 | absnidd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 89 | 88 | sumeq2dv | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 90 | 64 65 | fsumrecl | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 91 | 65 | renegcld | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ∧  𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 92 | 64 91 85 | fsumge0 | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  0  ≤  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 93 | 92 67 | breqtrd | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  0  ≤  - Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 94 | 90 | le0neg1d | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ≤  0  ↔  0  ≤  - Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 95 | 93 94 | mpbird | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ≤  0 ) | 
						
							| 96 | 90 95 | absnidd | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  - Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 97 | 67 89 96 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 98 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 99 |  | rpaddcl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  2  ∈  ℝ+ )  →  ( 𝐴  +  2 )  ∈  ℝ+ ) | 
						
							| 100 | 5 98 99 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  +  2 )  ∈  ℝ+ ) | 
						
							| 101 | 7 100 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 102 | 101 20 | rpdivcld | ⊢ ( 𝜑  →  ( 𝐶  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 103 | 102 | rpred | ⊢ ( 𝜑  →  ( 𝐶  /  𝐸 )  ∈  ℝ ) | 
						
							| 104 | 103 | reefcld | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐶  /  𝐸 ) )  ∈  ℝ ) | 
						
							| 105 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 106 |  | icossre | ⊢ ( ( ( exp ‘ ( 𝐶  /  𝐸 ) )  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ )  ⊆  ℝ ) | 
						
							| 107 | 104 105 106 | sylancl | ⊢ ( 𝜑  →  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ )  ⊆  ℝ ) | 
						
							| 108 | 107 8 | sseldd | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 109 | 108 12 | remulcld | ⊢ ( 𝜑  →  ( 𝐾  ·  𝑌 )  ∈  ℝ ) | 
						
							| 110 | 12 | recnd | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 111 | 110 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝑌 )  =  𝑌 ) | 
						
							| 112 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 113 |  | efgt1 | ⊢ ( ( 𝐶  /  𝐸 )  ∈  ℝ+  →  1  <  ( exp ‘ ( 𝐶  /  𝐸 ) ) ) | 
						
							| 114 | 102 113 | syl | ⊢ ( 𝜑  →  1  <  ( exp ‘ ( 𝐶  /  𝐸 ) ) ) | 
						
							| 115 |  | elicopnf | ⊢ ( ( exp ‘ ( 𝐶  /  𝐸 ) )  ∈  ℝ  →  ( 𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ )  ↔  ( 𝐾  ∈  ℝ  ∧  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) ) ) | 
						
							| 116 | 104 115 | syl | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ )  ↔  ( 𝐾  ∈  ℝ  ∧  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) ) ) | 
						
							| 117 | 116 | simplbda | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( exp ‘ ( 𝐶  /  𝐸 ) ) [,) +∞ ) )  →  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) | 
						
							| 118 | 8 117 | mpdan | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐶  /  𝐸 ) )  ≤  𝐾 ) | 
						
							| 119 | 112 104 108 114 118 | ltletrd | ⊢ ( 𝜑  →  1  <  𝐾 ) | 
						
							| 120 |  | ltmul1 | ⊢ ( ( 1  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  ( 𝑌  ∈  ℝ  ∧  0  <  𝑌 ) )  →  ( 1  <  𝐾  ↔  ( 1  ·  𝑌 )  <  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 121 | 112 108 12 31 120 | syl112anc | ⊢ ( 𝜑  →  ( 1  <  𝐾  ↔  ( 1  ·  𝑌 )  <  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 122 | 119 121 | mpbid | ⊢ ( 𝜑  →  ( 1  ·  𝑌 )  <  ( 𝐾  ·  𝑌 ) ) | 
						
							| 123 | 111 122 | eqbrtrrd | ⊢ ( 𝜑  →  𝑌  <  ( 𝐾  ·  𝑌 ) ) | 
						
							| 124 | 12 109 123 | ltled | ⊢ ( 𝜑  →  𝑌  ≤  ( 𝐾  ·  𝑌 ) ) | 
						
							| 125 |  | flword2 | ⊢ ( ( 𝑌  ∈  ℝ  ∧  ( 𝐾  ·  𝑌 )  ∈  ℝ  ∧  𝑌  ≤  ( 𝐾  ·  𝑌 ) )  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 126 | 12 109 124 125 | syl3anc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 127 | 109 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℤ ) | 
						
							| 128 |  | uzid | ⊢ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℤ  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 129 | 127 128 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 130 |  | elfzuzb | ⊢ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ↔  ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) )  ∧  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) | 
						
							| 131 | 126 129 130 | sylanbrc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 132 |  | oveq2 | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑌 )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 133 | 132 | raleqdv | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑌 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 134 | 132 | raleqdv | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑌 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 135 | 133 134 | orbi12d | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑌 )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 136 | 135 | imbi2d | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑌 )  →  ( ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) )  ↔  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) ) | 
						
							| 137 |  | oveq2 | ⊢ ( 𝑥  =  𝑚  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ) | 
						
							| 138 | 137 | raleqdv | ⊢ ( 𝑥  =  𝑚  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 139 | 137 | raleqdv | ⊢ ( 𝑥  =  𝑚  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 140 | 138 139 | orbi12d | ⊢ ( 𝑥  =  𝑚  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 141 | 140 | imbi2d | ⊢ ( 𝑥  =  𝑚  →  ( ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) )  ↔  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) ) | 
						
							| 142 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ) | 
						
							| 143 | 142 | raleqdv | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 144 | 142 | raleqdv | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 145 | 143 144 | orbi12d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 146 | 145 | imbi2d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) )  ↔  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) ) | 
						
							| 147 |  | oveq2 | ⊢ ( 𝑥  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 148 | 147 | raleqdv | ⊢ ( 𝑥  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 149 | 147 | raleqdv | ⊢ ( 𝑥  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 150 | 148 149 | orbi12d | ⊢ ( 𝑥  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 151 | 150 | imbi2d | ⊢ ( 𝑥  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) )  ↔  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) ) | 
						
							| 152 |  | elfzle3 | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( ⌊ ‘ 𝑌 ) ) | 
						
							| 153 |  | elfzel2 | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( ⌊ ‘ 𝑌 )  ∈  ℤ ) | 
						
							| 154 | 153 | zred | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( ⌊ ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 155 | 154 | ltp1d | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( ⌊ ‘ 𝑌 )  <  ( ( ⌊ ‘ 𝑌 )  +  1 ) ) | 
						
							| 156 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ ) | 
						
							| 157 | 154 156 | syl | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ ) | 
						
							| 158 | 154 157 | ltnled | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( ( ⌊ ‘ 𝑌 )  <  ( ( ⌊ ‘ 𝑌 )  +  1 )  ↔  ¬  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 159 | 155 158 | mpbid | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ¬  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  ( ⌊ ‘ 𝑌 ) ) | 
						
							| 160 | 152 159 | pm2.21dd | ⊢ ( 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) )  →  ( 𝑅 ‘ 𝑖 )  ≤  0 ) | 
						
							| 161 | 160 | rgen | ⊢ ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 | 
						
							| 162 | 161 | olci | ⊢ ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) | 
						
							| 163 | 162 | 2a1i | ⊢ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) )  →  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 164 |  | elfzofz | ⊢ ( 𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 165 |  | elfzp12 | ⊢ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) )  →  ( 𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ↔  ( 𝑚  =  ( ⌊ ‘ 𝑌 )  ∨  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) ) | 
						
							| 166 | 126 165 | syl | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  ↔  ( 𝑚  =  ( ⌊ ‘ 𝑌 )  ∨  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) ) | 
						
							| 167 | 164 166 | imbitrid | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( 𝑚  =  ( ⌊ ‘ 𝑌 )  ∨  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) ) | 
						
							| 168 | 167 | imp | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑚  =  ( ⌊ ‘ 𝑌 )  ∨  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) ) | 
						
							| 169 | 36 | nnrpd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ+ ) | 
						
							| 170 | 41 | ffvelcdmi | ⊢ ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℝ+  →  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∈  ℝ ) | 
						
							| 171 | 169 170 | syl | ⊢ ( 𝜑  →  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∈  ℝ ) | 
						
							| 172 | 13 171 | letrid | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∨  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  0 ) ) | 
						
							| 173 | 172 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( 0  ≤  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∨  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  0 ) ) | 
						
							| 174 |  | oveq1 | ⊢ ( 𝑚  =  ( ⌊ ‘ 𝑌 )  →  ( 𝑚  +  1 )  =  ( ( ⌊ ‘ 𝑌 )  +  1 ) ) | 
						
							| 175 | 174 | oveq2d | ⊢ ( 𝑚  =  ( ⌊ ‘ 𝑌 )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 176 | 12 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ℤ ) | 
						
							| 177 | 176 | peano2zd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℤ ) | 
						
							| 178 |  | fzsn | ⊢ ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℤ  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ( ⌊ ‘ 𝑌 )  +  1 ) )  =  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } ) | 
						
							| 179 | 177 178 | syl | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ( ⌊ ‘ 𝑌 )  +  1 ) )  =  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } ) | 
						
							| 180 | 175 179 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) )  =  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } ) | 
						
							| 181 | 180 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 182 |  | ovex | ⊢ ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  V | 
						
							| 183 |  | fveq2 | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 184 | 183 | breq2d | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) ) | 
						
							| 185 | 182 184 | ralsn | ⊢ ( ∀ 𝑖  ∈  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 186 | 181 185 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) ) | 
						
							| 187 | 180 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ∀ 𝑖  ∈  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 188 | 183 | breq1d | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  0 ) ) | 
						
							| 189 | 182 188 | ralsn | ⊢ ( ∀ 𝑖  ∈  { ( ( ⌊ ‘ 𝑌 )  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  0 ) | 
						
							| 190 | 187 189 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  0 ) ) | 
						
							| 191 | 186 190 | orbi12d | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  ↔  ( 0  ≤  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ∨  ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  ≤  0 ) ) ) | 
						
							| 192 | 173 191 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 193 | 192 | a1d | ⊢ ( ( 𝜑  ∧  𝑚  =  ( ⌊ ‘ 𝑌 ) )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 194 |  | elfzuz | ⊢ ( 𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑚  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 195 | 194 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑚  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) ) | 
						
							| 196 |  | eluzfz2 | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  →  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ) | 
						
							| 197 | 195 196 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ) | 
						
							| 198 |  | fveq2 | ⊢ ( 𝑖  =  𝑚  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 199 | 198 | breq2d | ⊢ ( 𝑖  =  𝑚  →  ( 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 200 | 199 | rspcv | ⊢ ( 𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  →  0  ≤  ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 201 | 197 200 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  →  0  ≤  ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 202 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ¬  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 203 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ  ∧  𝑚  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 204 | 36 194 203 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 205 | 204 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 206 |  | elfzle1 | ⊢ ( 𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑚 ) | 
						
							| 207 | 206 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑚 ) | 
						
							| 208 |  | elfzelz | ⊢ ( 𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 209 |  | zltp1le | ⊢ ( ( ( ⌊ ‘ 𝑌 )  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( ( ⌊ ‘ 𝑌 )  <  𝑚  ↔  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑚 ) ) | 
						
							| 210 | 176 208 209 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ⌊ ‘ 𝑌 )  <  𝑚  ↔  ( ( ⌊ ‘ 𝑌 )  +  1 )  ≤  𝑚 ) ) | 
						
							| 211 | 207 210 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ⌊ ‘ 𝑌 )  <  𝑚 ) | 
						
							| 212 |  | fllt | ⊢ ( ( 𝑌  ∈  ℝ  ∧  𝑚  ∈  ℤ )  →  ( 𝑌  <  𝑚  ↔  ( ⌊ ‘ 𝑌 )  <  𝑚 ) ) | 
						
							| 213 | 12 208 212 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑌  <  𝑚  ↔  ( ⌊ ‘ 𝑌 )  <  𝑚 ) ) | 
						
							| 214 | 211 213 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑌  <  𝑚 ) | 
						
							| 215 |  | elfzle2 | ⊢ ( 𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  𝑚  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 216 | 215 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑚  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 217 |  | flge | ⊢ ( ( ( 𝐾  ·  𝑌 )  ∈  ℝ  ∧  𝑚  ∈  ℤ )  →  ( 𝑚  ≤  ( 𝐾  ·  𝑌 )  ↔  𝑚  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 218 | 109 208 217 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑚  ≤  ( 𝐾  ·  𝑌 )  ↔  𝑚  ≤  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 219 | 216 218 | mpbird | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑚  ≤  ( 𝐾  ·  𝑌 ) ) | 
						
							| 220 | 214 219 | jca | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑌  <  𝑚  ∧  𝑚  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 221 | 220 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  ( 𝑌  <  𝑚  ∧  𝑚  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 222 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  𝐸  ∈  ( 0 (,) 1 ) ) | 
						
							| 223 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  𝑌  ∈  ( 𝑋 (,) +∞ ) ) | 
						
							| 224 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 225 | 1 222 3 223 205 221 224 | pntpbnd1a | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑚 )  /  𝑚 ) )  ≤  𝐸 ) | 
						
							| 226 |  | breq2 | ⊢ ( 𝑦  =  𝑚  →  ( 𝑌  <  𝑦  ↔  𝑌  <  𝑚 ) ) | 
						
							| 227 |  | breq1 | ⊢ ( 𝑦  =  𝑚  →  ( 𝑦  ≤  ( 𝐾  ·  𝑌 )  ↔  𝑚  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 228 | 226 227 | anbi12d | ⊢ ( 𝑦  =  𝑚  →  ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ↔  ( 𝑌  <  𝑚  ∧  𝑚  ≤  ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 229 |  | fveq2 | ⊢ ( 𝑦  =  𝑚  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 230 |  | id | ⊢ ( 𝑦  =  𝑚  →  𝑦  =  𝑚 ) | 
						
							| 231 | 229 230 | oveq12d | ⊢ ( 𝑦  =  𝑚  →  ( ( 𝑅 ‘ 𝑦 )  /  𝑦 )  =  ( ( 𝑅 ‘ 𝑚 )  /  𝑚 ) ) | 
						
							| 232 | 231 | fveq2d | ⊢ ( 𝑦  =  𝑚  →  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  =  ( abs ‘ ( ( 𝑅 ‘ 𝑚 )  /  𝑚 ) ) ) | 
						
							| 233 | 232 | breq1d | ⊢ ( 𝑦  =  𝑚  →  ( ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸  ↔  ( abs ‘ ( ( 𝑅 ‘ 𝑚 )  /  𝑚 ) )  ≤  𝐸 ) ) | 
						
							| 234 | 228 233 | anbi12d | ⊢ ( 𝑦  =  𝑚  →  ( ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 )  ↔  ( ( 𝑌  <  𝑚  ∧  𝑚  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑚 )  /  𝑚 ) )  ≤  𝐸 ) ) ) | 
						
							| 235 | 234 | rspcev | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( ( 𝑌  <  𝑚  ∧  𝑚  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑚 )  /  𝑚 ) )  ≤  𝐸 ) )  →  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 236 | 205 221 225 235 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) )  →  ∃ 𝑦  ∈  ℕ ( ( 𝑌  <  𝑦  ∧  𝑦  ≤  ( 𝐾  ·  𝑌 ) )  ∧  ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐸 ) ) | 
						
							| 237 | 202 236 | mtand | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ¬  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 238 | 237 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  0  ≤  ( 𝑅 ‘ 𝑚 ) )  →  ¬  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 239 | 204 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 240 | 41 | ffvelcdmi | ⊢ ( 𝑚  ∈  ℝ+  →  ( 𝑅 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 241 | 239 240 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 242 | 241 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( 𝑅 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 243 | 242 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( 𝑅 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 244 | 243 | subid1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( ( 𝑅 ‘ 𝑚 )  −  0 )  =  ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 245 | 204 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 246 | 245 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 247 | 41 | ffvelcdmi | ⊢ ( ( 𝑚  +  1 )  ∈  ℝ+  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∈  ℝ ) | 
						
							| 248 | 246 247 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∈  ℝ ) | 
						
							| 249 | 248 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∈  ℝ ) | 
						
							| 250 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  0  ∈  ℝ ) | 
						
							| 251 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 252 |  | letric | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∈  ℝ )  →  ( 0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∨  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) ) | 
						
							| 253 | 251 248 252 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∨  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) ) | 
						
							| 254 | 253 | ord | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) ) | 
						
							| 255 | 254 | imp | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) | 
						
							| 256 | 255 | adantrl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) | 
						
							| 257 | 249 250 242 256 | lesub2dd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( ( 𝑅 ‘ 𝑚 )  −  0 )  ≤  ( ( 𝑅 ‘ 𝑚 )  −  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 258 | 244 257 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( 𝑅 ‘ 𝑚 )  ≤  ( ( 𝑅 ‘ 𝑚 )  −  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 259 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  0  ≤  ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 260 | 242 259 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  =  ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 261 | 249 250 242 256 259 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 262 | 249 242 261 | abssuble0d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) )  =  ( ( 𝑅 ‘ 𝑚 )  −  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 263 | 258 260 262 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  ∧  ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 264 | 263 | expr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  0  ≤  ( 𝑅 ‘ 𝑚 ) )  →  ( ¬  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) ) | 
						
							| 265 | 238 264 | mt3d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  0  ≤  ( 𝑅 ‘ 𝑚 ) )  →  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 266 | 265 | ex | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( 0  ≤  ( 𝑅 ‘ 𝑚 )  →  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 267 | 201 266 | syld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  →  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 268 |  | ovex | ⊢ ( 𝑚  +  1 )  ∈  V | 
						
							| 269 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 270 | 269 | breq2d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 271 | 268 270 | ralsn | ⊢ ( ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 272 | 267 271 | imbitrrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  →  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 273 | 272 | ancld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) ) | 
						
							| 274 |  | fzsuc | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 )  +  1 ) )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) )  =  ( ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) ) | 
						
							| 275 | 195 274 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) )  =  ( ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) ) | 
						
							| 276 | 275 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 277 |  | ralunb | ⊢ ( ∀ 𝑖  ∈  ( ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 278 | 276 277 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) ) | 
						
							| 279 | 273 278 | sylibrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  →  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 280 | 198 | breq1d | ⊢ ( 𝑖  =  𝑚  →  ( ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ 𝑚 )  ≤  0 ) ) | 
						
							| 281 | 280 | rspcv | ⊢ ( 𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  →  ( 𝑅 ‘ 𝑚 )  ≤  0 ) ) | 
						
							| 282 | 197 281 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  →  ( 𝑅 ‘ 𝑚 )  ≤  0 ) ) | 
						
							| 283 | 237 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 𝑅 ‘ 𝑚 )  ≤  0 )  →  ¬  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 284 | 254 | con1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0  →  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 285 | 284 | imp | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 )  →  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 286 | 285 | adantrl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 287 | 241 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 𝑅 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 288 | 287 | renegcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  - ( 𝑅 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 289 | 248 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∈  ℝ ) | 
						
							| 290 | 288 289 | addge02d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 0  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ↔  - ( 𝑅 ‘ 𝑚 )  ≤  ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  +  - ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 291 | 286 290 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  - ( 𝑅 ‘ 𝑚 )  ≤  ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  +  - ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 292 | 289 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ∈  ℂ ) | 
						
							| 293 | 287 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 𝑅 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 294 | 292 293 | negsubd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  +  - ( 𝑅 ‘ 𝑚 ) )  =  ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 295 | 291 294 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  - ( 𝑅 ‘ 𝑚 )  ≤  ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 296 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 𝑅 ‘ 𝑚 )  ≤  0 ) | 
						
							| 297 | 287 296 | absnidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  =  - ( 𝑅 ‘ 𝑚 ) ) | 
						
							| 298 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  0  ∈  ℝ ) | 
						
							| 299 | 287 298 289 296 286 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( 𝑅 ‘ 𝑚 )  ≤  ( 𝑅 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 300 | 287 289 299 | abssubge0d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) )  =  ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) | 
						
							| 301 | 295 297 300 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( ( 𝑅 ‘ 𝑚 )  ≤  0  ∧  ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) )  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) | 
						
							| 302 | 301 | expr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 𝑅 ‘ 𝑚 )  ≤  0 )  →  ( ¬  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0  →  ( abs ‘ ( 𝑅 ‘ 𝑚 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑚  +  1 ) )  −  ( 𝑅 ‘ 𝑚 ) ) ) ) ) | 
						
							| 303 | 283 302 | mt3d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  ∧  ( 𝑅 ‘ 𝑚 )  ≤  0 )  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) | 
						
							| 304 | 303 | ex | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( 𝑅 ‘ 𝑚 )  ≤  0  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) ) | 
						
							| 305 | 282 304 | syld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  →  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) ) | 
						
							| 306 | 269 | breq1d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) ) | 
						
							| 307 | 268 306 | ralsn | ⊢ ( ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( 𝑅 ‘ ( 𝑚  +  1 ) )  ≤  0 ) | 
						
							| 308 | 305 307 | imbitrrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  →  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 309 | 308 | ancld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ∧  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 310 | 275 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ∀ 𝑖  ∈  ( ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 311 |  | ralunb | ⊢ ( ∀ 𝑖  ∈  ( ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ∧  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 312 | 310 311 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0  ↔  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  ∧  ∀ 𝑖  ∈  { ( 𝑚  +  1 ) } ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 313 | 309 312 | sylibrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0  →  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 314 | 279 313 | orim12d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 315 | 193 314 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑚  =  ( ⌊ ‘ 𝑌 )  ∨  𝑚  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 316 | 168 315 | syldan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) )  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 317 | 316 | expcom | ⊢ ( 𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( 𝜑  →  ( ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 )  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) ) | 
						
							| 318 | 317 | a2d | ⊢ ( 𝑚  ∈  ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) )  →  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( 𝑚  +  1 ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) ) | 
						
							| 319 | 136 141 146 151 163 318 | fzind2 | ⊢ ( ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) )  →  ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) ) | 
						
							| 320 | 131 319 | mpcom | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) 0  ≤  ( 𝑅 ‘ 𝑖 )  ∨  ∀ 𝑖  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( 𝑅 ‘ 𝑖 )  ≤  0 ) ) | 
						
							| 321 | 63 97 320 | mpjaodan | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 322 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 323 |  | id | ⊢ ( 𝑦  =  𝑛  →  𝑦  =  𝑛 ) | 
						
							| 324 |  | oveq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 325 | 323 324 | oveq12d | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  ·  ( 𝑦  +  1 ) )  =  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 326 | 322 325 | oveq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) )  =  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 327 | 326 | cbvsumv | ⊢ Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) )  =  Σ 𝑛  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 328 |  | oveq1 | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( 𝑖 ... 𝑗 )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ) | 
						
							| 329 | 328 | sumeq1d | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  Σ 𝑛  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 330 | 327 329 | eqtrid | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 331 | 330 | fveq2d | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( abs ‘ Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) ) )  =  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 332 | 331 | breq1d | ⊢ ( 𝑖  =  ( ( ⌊ ‘ 𝑌 )  +  1 )  →  ( ( abs ‘ Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) ) )  ≤  𝐴  ↔  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴 ) ) | 
						
							| 333 |  | oveq2 | ⊢ ( 𝑗  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 )  =  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ) | 
						
							| 334 | 333 | sumeq1d | ⊢ ( 𝑗  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 335 | 334 | fveq2d | ⊢ ( 𝑗  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 336 | 335 | breq1d | ⊢ ( 𝑗  =  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴  ↔  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴 ) ) | 
						
							| 337 | 332 336 | rspc2va | ⊢ ( ( ( ( ( ⌊ ‘ 𝑌 )  +  1 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝐾  ·  𝑌 ) )  ∈  ℤ )  ∧  ∀ 𝑖  ∈  ℕ ∀ 𝑗  ∈  ℤ ( abs ‘ Σ 𝑦  ∈  ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 )  /  ( 𝑦  ·  ( 𝑦  +  1 ) ) ) )  ≤  𝐴 )  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴 ) | 
						
							| 338 | 36 127 6 337 | syl21anc | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴 ) | 
						
							| 339 | 321 338 | eqbrtrrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( ( ( ⌊ ‘ 𝑌 )  +  1 ) ... ( ⌊ ‘ ( 𝐾  ·  𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝐴 ) |