| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntpbnd.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntpbnd1.e | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 (,) 1 ) ) | 
						
							| 3 |  | pntpbnd1.x | ⊢ 𝑋  =  ( exp ‘ ( 2  /  𝐸 ) ) | 
						
							| 4 |  | pntpbnd1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 (,) +∞ ) ) | 
						
							| 5 |  | pntpbnd1a.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 6 |  | pntpbnd1a.2 | ⊢ ( 𝜑  →  ( 𝑌  <  𝑁  ∧  𝑁  ≤  ( 𝐾  ·  𝑌 ) ) ) | 
						
							| 7 |  | pntpbnd1a.3 | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  ≤  ( abs ‘ ( ( 𝑅 ‘ ( 𝑁  +  1 ) )  −  ( 𝑅 ‘ 𝑁 ) ) ) ) | 
						
							| 8 | 5 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 9 | 1 | pntrf | ⊢ 𝑅 : ℝ+ ⟶ ℝ | 
						
							| 10 | 9 | ffvelcdmi | ⊢ ( 𝑁  ∈  ℝ+  →  ( 𝑅 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝜑  →  ( 𝑅 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 12 | 11 8 | rerpdivcld | ⊢ ( 𝜑  →  ( ( 𝑅 ‘ 𝑁 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝜑  →  ( ( 𝑅 ‘ 𝑁 )  /  𝑁 )  ∈  ℂ ) | 
						
							| 14 | 13 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑅 ‘ 𝑁 )  /  𝑁 ) )  ∈  ℝ ) | 
						
							| 15 | 8 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 16 | 15 8 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 17 |  | ioossre | ⊢ ( 0 (,) 1 )  ⊆  ℝ | 
						
							| 18 | 17 2 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 19 | 11 | recnd | ⊢ ( 𝜑  →  ( 𝑅 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 20 | 5 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 22 | 5 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 23 | 19 21 22 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑅 ‘ 𝑁 )  /  𝑁 ) )  =  ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  /  ( abs ‘ 𝑁 ) ) ) | 
						
							| 24 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 25 | 24 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑁 ) | 
						
							| 26 | 20 25 | absidd | ⊢ ( 𝜑  →  ( abs ‘ 𝑁 )  =  𝑁 ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  /  ( abs ‘ 𝑁 ) )  =  ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  /  𝑁 ) ) | 
						
							| 28 | 23 27 | eqtrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑅 ‘ 𝑁 )  /  𝑁 ) )  =  ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  /  𝑁 ) ) | 
						
							| 29 | 19 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 30 | 5 | peano2nnd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 31 |  | vmacl | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  →  ( Λ ‘ ( 𝑁  +  1 ) )  ∈  ℝ ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  ( Λ ‘ ( 𝑁  +  1 ) )  ∈  ℝ ) | 
						
							| 33 |  | peano2rem | ⊢ ( ( Λ ‘ ( 𝑁  +  1 ) )  ∈  ℝ  →  ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 )  ∈  ℝ ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( 𝜑  →  ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 )  ∈  ℂ ) | 
						
							| 36 | 35 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) )  ∈  ℝ ) | 
						
							| 37 | 30 | nnrpd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℝ+ ) | 
						
							| 38 | 1 | pntrval | ⊢ ( ( 𝑁  +  1 )  ∈  ℝ+  →  ( 𝑅 ‘ ( 𝑁  +  1 ) )  =  ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( 𝑁  +  1 ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( 𝑅 ‘ ( 𝑁  +  1 ) )  =  ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( 𝑁  +  1 ) ) ) | 
						
							| 40 | 1 | pntrval | ⊢ ( 𝑁  ∈  ℝ+  →  ( 𝑅 ‘ 𝑁 )  =  ( ( ψ ‘ 𝑁 )  −  𝑁 ) ) | 
						
							| 41 | 8 40 | syl | ⊢ ( 𝜑  →  ( 𝑅 ‘ 𝑁 )  =  ( ( ψ ‘ 𝑁 )  −  𝑁 ) ) | 
						
							| 42 | 39 41 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑅 ‘ ( 𝑁  +  1 ) )  −  ( 𝑅 ‘ 𝑁 ) )  =  ( ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( 𝑁  +  1 ) )  −  ( ( ψ ‘ 𝑁 )  −  𝑁 ) ) ) | 
						
							| 43 |  | peano2re | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 44 | 20 43 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 45 |  | chpcl | ⊢ ( ( 𝑁  +  1 )  ∈  ℝ  →  ( ψ ‘ ( 𝑁  +  1 ) )  ∈  ℝ ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( ψ ‘ ( 𝑁  +  1 ) )  ∈  ℝ ) | 
						
							| 47 | 46 | recnd | ⊢ ( 𝜑  →  ( ψ ‘ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 48 | 44 | recnd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 49 |  | chpcl | ⊢ ( 𝑁  ∈  ℝ  →  ( ψ ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 50 | 20 49 | syl | ⊢ ( 𝜑  →  ( ψ ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( 𝜑  →  ( ψ ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 52 | 47 48 51 21 | sub4d | ⊢ ( 𝜑  →  ( ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( 𝑁  +  1 ) )  −  ( ( ψ ‘ 𝑁 )  −  𝑁 ) )  =  ( ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( ψ ‘ 𝑁 ) )  −  ( ( 𝑁  +  1 )  −  𝑁 ) ) ) | 
						
							| 53 | 32 | recnd | ⊢ ( 𝜑  →  ( Λ ‘ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 54 |  | chpp1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ψ ‘ ( 𝑁  +  1 ) )  =  ( ( ψ ‘ 𝑁 )  +  ( Λ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 55 | 24 54 | syl | ⊢ ( 𝜑  →  ( ψ ‘ ( 𝑁  +  1 ) )  =  ( ( ψ ‘ 𝑁 )  +  ( Λ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 56 | 51 53 55 | mvrladdd | ⊢ ( 𝜑  →  ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( ψ ‘ 𝑁 ) )  =  ( Λ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 57 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 58 |  | pncan2 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  𝑁 )  =  1 ) | 
						
							| 59 | 21 57 58 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  𝑁 )  =  1 ) | 
						
							| 60 | 56 59 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ψ ‘ ( 𝑁  +  1 ) )  −  ( ψ ‘ 𝑁 ) )  −  ( ( 𝑁  +  1 )  −  𝑁 ) )  =  ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) ) | 
						
							| 61 | 42 52 60 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑅 ‘ ( 𝑁  +  1 ) )  −  ( 𝑅 ‘ 𝑁 ) )  =  ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑅 ‘ ( 𝑁  +  1 ) )  −  ( 𝑅 ‘ 𝑁 ) ) )  =  ( abs ‘ ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) ) ) | 
						
							| 63 | 7 62 | breqtrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  ≤  ( abs ‘ ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) ) ) | 
						
							| 64 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 65 | 64 15 | resubcld | ⊢ ( 𝜑  →  ( 1  −  ( log ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 66 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 67 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 68 |  | eliooord | ⊢ ( 𝐸  ∈  ( 0 (,) 1 )  →  ( 0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 69 | 2 68 | syl | ⊢ ( 𝜑  →  ( 0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 70 | 69 | simpld | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 71 | 18 70 | elrpd | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 72 |  | rerpdivcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐸  ∈  ℝ+ )  →  ( 2  /  𝐸 )  ∈  ℝ ) | 
						
							| 73 | 67 71 72 | sylancr | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ∈  ℝ ) | 
						
							| 74 | 67 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 75 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 76 | 75 | a1i | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 77 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 78 | 77 | div1i | ⊢ ( 2  /  1 )  =  2 | 
						
							| 79 | 69 | simprd | ⊢ ( 𝜑  →  𝐸  <  1 ) | 
						
							| 80 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 81 | 80 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 82 |  | 2pos | ⊢ 0  <  2 | 
						
							| 83 | 82 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 84 |  | ltdiv2 | ⊢ ( ( ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐸  <  1  ↔  ( 2  /  1 )  <  ( 2  /  𝐸 ) ) ) | 
						
							| 85 | 18 70 64 81 74 83 84 | syl222anc | ⊢ ( 𝜑  →  ( 𝐸  <  1  ↔  ( 2  /  1 )  <  ( 2  /  𝐸 ) ) ) | 
						
							| 86 | 79 85 | mpbid | ⊢ ( 𝜑  →  ( 2  /  1 )  <  ( 2  /  𝐸 ) ) | 
						
							| 87 | 78 86 | eqbrtrrid | ⊢ ( 𝜑  →  2  <  ( 2  /  𝐸 ) ) | 
						
							| 88 | 64 74 73 76 87 | lttrd | ⊢ ( 𝜑  →  1  <  ( 2  /  𝐸 ) ) | 
						
							| 89 | 73 | rpefcld | ⊢ ( 𝜑  →  ( exp ‘ ( 2  /  𝐸 ) )  ∈  ℝ+ ) | 
						
							| 90 | 3 89 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 91 | 90 | rpred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 92 | 90 | rpxrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 93 |  | elioopnf | ⊢ ( 𝑋  ∈  ℝ*  →  ( 𝑌  ∈  ( 𝑋 (,) +∞ )  ↔  ( 𝑌  ∈  ℝ  ∧  𝑋  <  𝑌 ) ) ) | 
						
							| 94 | 92 93 | syl | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 (,) +∞ )  ↔  ( 𝑌  ∈  ℝ  ∧  𝑋  <  𝑌 ) ) ) | 
						
							| 95 | 4 94 | mpbid | ⊢ ( 𝜑  →  ( 𝑌  ∈  ℝ  ∧  𝑋  <  𝑌 ) ) | 
						
							| 96 | 95 | simpld | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 97 | 95 | simprd | ⊢ ( 𝜑  →  𝑋  <  𝑌 ) | 
						
							| 98 | 6 | simpld | ⊢ ( 𝜑  →  𝑌  <  𝑁 ) | 
						
							| 99 | 91 96 20 97 98 | lttrd | ⊢ ( 𝜑  →  𝑋  <  𝑁 ) | 
						
							| 100 | 3 99 | eqbrtrrid | ⊢ ( 𝜑  →  ( exp ‘ ( 2  /  𝐸 ) )  <  𝑁 ) | 
						
							| 101 | 8 | reeflogd | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝑁 ) )  =  𝑁 ) | 
						
							| 102 | 100 101 | breqtrrd | ⊢ ( 𝜑  →  ( exp ‘ ( 2  /  𝐸 ) )  <  ( exp ‘ ( log ‘ 𝑁 ) ) ) | 
						
							| 103 |  | eflt | ⊢ ( ( ( 2  /  𝐸 )  ∈  ℝ  ∧  ( log ‘ 𝑁 )  ∈  ℝ )  →  ( ( 2  /  𝐸 )  <  ( log ‘ 𝑁 )  ↔  ( exp ‘ ( 2  /  𝐸 ) )  <  ( exp ‘ ( log ‘ 𝑁 ) ) ) ) | 
						
							| 104 | 73 15 103 | syl2anc | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 )  <  ( log ‘ 𝑁 )  ↔  ( exp ‘ ( 2  /  𝐸 ) )  <  ( exp ‘ ( log ‘ 𝑁 ) ) ) ) | 
						
							| 105 | 102 104 | mpbird | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  <  ( log ‘ 𝑁 ) ) | 
						
							| 106 | 64 73 15 88 105 | lttrd | ⊢ ( 𝜑  →  1  <  ( log ‘ 𝑁 ) ) | 
						
							| 107 | 64 15 106 | ltled | ⊢ ( 𝜑  →  1  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 108 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 109 |  | suble0 | ⊢ ( ( 1  ∈  ℝ  ∧  ( log ‘ 𝑁 )  ∈  ℝ )  →  ( ( 1  −  ( log ‘ 𝑁 ) )  ≤  0  ↔  1  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 110 | 108 15 109 | sylancr | ⊢ ( 𝜑  →  ( ( 1  −  ( log ‘ 𝑁 ) )  ≤  0  ↔  1  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 111 | 107 110 | mpbird | ⊢ ( 𝜑  →  ( 1  −  ( log ‘ 𝑁 ) )  ≤  0 ) | 
						
							| 112 |  | vmage0 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 113 | 30 112 | syl | ⊢ ( 𝜑  →  0  ≤  ( Λ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 114 | 65 66 32 111 113 | letrd | ⊢ ( 𝜑  →  ( 1  −  ( log ‘ 𝑁 ) )  ≤  ( Λ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 115 | 37 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝑁  +  1 ) )  ∈  ℝ ) | 
						
							| 116 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( log ‘ 𝑁 )  ∈  ℝ )  →  ( 1  +  ( log ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 117 | 108 15 116 | sylancr | ⊢ ( 𝜑  →  ( 1  +  ( log ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 118 |  | vmalelog | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  →  ( Λ ‘ ( 𝑁  +  1 ) )  ≤  ( log ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 119 | 30 118 | syl | ⊢ ( 𝜑  →  ( Λ ‘ ( 𝑁  +  1 ) )  ≤  ( log ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 120 | 74 20 | remulcld | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 121 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 122 |  | rpmulcl | ⊢ ( ( e  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( e  ·  𝑁 )  ∈  ℝ+ ) | 
						
							| 123 | 121 8 122 | sylancr | ⊢ ( 𝜑  →  ( e  ·  𝑁 )  ∈  ℝ+ ) | 
						
							| 124 | 123 | rpred | ⊢ ( 𝜑  →  ( e  ·  𝑁 )  ∈  ℝ ) | 
						
							| 125 | 5 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 126 | 64 20 20 125 | leadd2dd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ≤  ( 𝑁  +  𝑁 ) ) | 
						
							| 127 | 21 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 128 | 126 127 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 129 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 130 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 131 | 130 | simpli | ⊢ 2  <  e | 
						
							| 132 | 67 129 131 | ltleii | ⊢ 2  ≤  e | 
						
							| 133 | 132 | a1i | ⊢ ( 𝜑  →  2  ≤  e ) | 
						
							| 134 | 129 | a1i | ⊢ ( 𝜑  →  e  ∈  ℝ ) | 
						
							| 135 | 5 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 136 |  | lemul1 | ⊢ ( ( 2  ∈  ℝ  ∧  e  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( 2  ≤  e  ↔  ( 2  ·  𝑁 )  ≤  ( e  ·  𝑁 ) ) ) | 
						
							| 137 | 74 134 20 135 136 | syl112anc | ⊢ ( 𝜑  →  ( 2  ≤  e  ↔  ( 2  ·  𝑁 )  ≤  ( e  ·  𝑁 ) ) ) | 
						
							| 138 | 133 137 | mpbid | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ≤  ( e  ·  𝑁 ) ) | 
						
							| 139 | 44 120 124 128 138 | letrd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ≤  ( e  ·  𝑁 ) ) | 
						
							| 140 | 37 123 | logled | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  ≤  ( e  ·  𝑁 )  ↔  ( log ‘ ( 𝑁  +  1 ) )  ≤  ( log ‘ ( e  ·  𝑁 ) ) ) ) | 
						
							| 141 | 139 140 | mpbid | ⊢ ( 𝜑  →  ( log ‘ ( 𝑁  +  1 ) )  ≤  ( log ‘ ( e  ·  𝑁 ) ) ) | 
						
							| 142 |  | relogmul | ⊢ ( ( e  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( log ‘ ( e  ·  𝑁 ) )  =  ( ( log ‘ e )  +  ( log ‘ 𝑁 ) ) ) | 
						
							| 143 | 121 8 142 | sylancr | ⊢ ( 𝜑  →  ( log ‘ ( e  ·  𝑁 ) )  =  ( ( log ‘ e )  +  ( log ‘ 𝑁 ) ) ) | 
						
							| 144 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 145 | 144 | oveq1i | ⊢ ( ( log ‘ e )  +  ( log ‘ 𝑁 ) )  =  ( 1  +  ( log ‘ 𝑁 ) ) | 
						
							| 146 | 143 145 | eqtrdi | ⊢ ( 𝜑  →  ( log ‘ ( e  ·  𝑁 ) )  =  ( 1  +  ( log ‘ 𝑁 ) ) ) | 
						
							| 147 | 141 146 | breqtrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝑁  +  1 ) )  ≤  ( 1  +  ( log ‘ 𝑁 ) ) ) | 
						
							| 148 | 32 115 117 119 147 | letrd | ⊢ ( 𝜑  →  ( Λ ‘ ( 𝑁  +  1 ) )  ≤  ( 1  +  ( log ‘ 𝑁 ) ) ) | 
						
							| 149 | 32 64 15 | absdifled | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) )  ≤  ( log ‘ 𝑁 )  ↔  ( ( 1  −  ( log ‘ 𝑁 ) )  ≤  ( Λ ‘ ( 𝑁  +  1 ) )  ∧  ( Λ ‘ ( 𝑁  +  1 ) )  ≤  ( 1  +  ( log ‘ 𝑁 ) ) ) ) ) | 
						
							| 150 | 114 148 149 | mpbir2and | ⊢ ( 𝜑  →  ( abs ‘ ( ( Λ ‘ ( 𝑁  +  1 ) )  −  1 ) )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 151 | 29 36 15 63 150 | letrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 152 | 29 15 8 151 | lediv1dd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) )  /  𝑁 )  ≤  ( ( log ‘ 𝑁 )  /  𝑁 ) ) | 
						
							| 153 | 28 152 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑅 ‘ 𝑁 )  /  𝑁 ) )  ≤  ( ( log ‘ 𝑁 )  /  𝑁 ) ) | 
						
							| 154 | 90 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 155 | 154 90 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑋 )  /  𝑋 )  ∈  ℝ ) | 
						
							| 156 | 64 73 88 | ltled | ⊢ ( 𝜑  →  1  ≤  ( 2  /  𝐸 ) ) | 
						
							| 157 |  | efle | ⊢ ( ( 1  ∈  ℝ  ∧  ( 2  /  𝐸 )  ∈  ℝ )  →  ( 1  ≤  ( 2  /  𝐸 )  ↔  ( exp ‘ 1 )  ≤  ( exp ‘ ( 2  /  𝐸 ) ) ) ) | 
						
							| 158 | 108 73 157 | sylancr | ⊢ ( 𝜑  →  ( 1  ≤  ( 2  /  𝐸 )  ↔  ( exp ‘ 1 )  ≤  ( exp ‘ ( 2  /  𝐸 ) ) ) ) | 
						
							| 159 | 156 158 | mpbid | ⊢ ( 𝜑  →  ( exp ‘ 1 )  ≤  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 160 |  | df-e | ⊢ e  =  ( exp ‘ 1 ) | 
						
							| 161 | 159 160 3 | 3brtr4g | ⊢ ( 𝜑  →  e  ≤  𝑋 ) | 
						
							| 162 | 144 107 | eqbrtrid | ⊢ ( 𝜑  →  ( log ‘ e )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 163 |  | logleb | ⊢ ( ( e  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( e  ≤  𝑁  ↔  ( log ‘ e )  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 164 | 121 8 163 | sylancr | ⊢ ( 𝜑  →  ( e  ≤  𝑁  ↔  ( log ‘ e )  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 165 | 162 164 | mpbird | ⊢ ( 𝜑  →  e  ≤  𝑁 ) | 
						
							| 166 |  | logdivlt | ⊢ ( ( ( 𝑋  ∈  ℝ  ∧  e  ≤  𝑋 )  ∧  ( 𝑁  ∈  ℝ  ∧  e  ≤  𝑁 ) )  →  ( 𝑋  <  𝑁  ↔  ( ( log ‘ 𝑁 )  /  𝑁 )  <  ( ( log ‘ 𝑋 )  /  𝑋 ) ) ) | 
						
							| 167 | 91 161 20 165 166 | syl22anc | ⊢ ( 𝜑  →  ( 𝑋  <  𝑁  ↔  ( ( log ‘ 𝑁 )  /  𝑁 )  <  ( ( log ‘ 𝑋 )  /  𝑋 ) ) ) | 
						
							| 168 | 99 167 | mpbid | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  /  𝑁 )  <  ( ( log ‘ 𝑋 )  /  𝑋 ) ) | 
						
							| 169 | 3 | fveq2i | ⊢ ( log ‘ 𝑋 )  =  ( log ‘ ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 170 | 73 | relogefd | ⊢ ( 𝜑  →  ( log ‘ ( exp ‘ ( 2  /  𝐸 ) ) )  =  ( 2  /  𝐸 ) ) | 
						
							| 171 | 169 170 | eqtrid | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  =  ( 2  /  𝐸 ) ) | 
						
							| 172 | 171 | oveq1d | ⊢ ( 𝜑  →  ( ( log ‘ 𝑋 )  /  𝑋 )  =  ( ( 2  /  𝐸 )  /  𝑋 ) ) | 
						
							| 173 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 174 |  | rpdivcl | ⊢ ( ( 2  ∈  ℝ+  ∧  𝐸  ∈  ℝ+ )  →  ( 2  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 175 | 173 71 174 | sylancr | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 176 | 175 | rpcnd | ⊢ ( 𝜑  →  ( 2  /  𝐸 )  ∈  ℂ ) | 
						
							| 177 | 176 | sqvald | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 ) ↑ 2 )  =  ( ( 2  /  𝐸 )  ·  ( 2  /  𝐸 ) ) ) | 
						
							| 178 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 179 | 71 | rpcnne0d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℂ  ∧  𝐸  ≠  0 ) ) | 
						
							| 180 |  | div12 | ⊢ ( ( ( 2  /  𝐸 )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  ( 𝐸  ∈  ℂ  ∧  𝐸  ≠  0 ) )  →  ( ( 2  /  𝐸 )  ·  ( 2  /  𝐸 ) )  =  ( 2  ·  ( ( 2  /  𝐸 )  /  𝐸 ) ) ) | 
						
							| 181 | 176 178 179 180 | syl3anc | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 )  ·  ( 2  /  𝐸 ) )  =  ( 2  ·  ( ( 2  /  𝐸 )  /  𝐸 ) ) ) | 
						
							| 182 | 177 181 | eqtrd | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 ) ↑ 2 )  =  ( 2  ·  ( ( 2  /  𝐸 )  /  𝐸 ) ) ) | 
						
							| 183 | 182 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 )  =  ( ( 2  ·  ( ( 2  /  𝐸 )  /  𝐸 ) )  /  2 ) ) | 
						
							| 184 | 175 71 | rpdivcld | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 )  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 185 | 184 | rpcnd | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 )  /  𝐸 )  ∈  ℂ ) | 
						
							| 186 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 187 | 186 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 188 | 185 178 187 | divcan3d | ⊢ ( 𝜑  →  ( ( 2  ·  ( ( 2  /  𝐸 )  /  𝐸 ) )  /  2 )  =  ( ( 2  /  𝐸 )  /  𝐸 ) ) | 
						
							| 189 | 183 188 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 )  =  ( ( 2  /  𝐸 )  /  𝐸 ) ) | 
						
							| 190 | 73 | resqcld | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 191 | 190 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 192 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 193 |  | rpaddcl | ⊢ ( ( 1  ∈  ℝ+  ∧  ( 2  /  𝐸 )  ∈  ℝ+ )  →  ( 1  +  ( 2  /  𝐸 ) )  ∈  ℝ+ ) | 
						
							| 194 | 192 175 193 | sylancr | ⊢ ( 𝜑  →  ( 1  +  ( 2  /  𝐸 ) )  ∈  ℝ+ ) | 
						
							| 195 | 194 | rpred | ⊢ ( 𝜑  →  ( 1  +  ( 2  /  𝐸 ) )  ∈  ℝ ) | 
						
							| 196 | 195 191 | readdcld | ⊢ ( 𝜑  →  ( ( 1  +  ( 2  /  𝐸 ) )  +  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 ) )  ∈  ℝ ) | 
						
							| 197 | 191 194 | ltaddrp2d | ⊢ ( 𝜑  →  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 )  <  ( ( 1  +  ( 2  /  𝐸 ) )  +  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 198 |  | efgt1p2 | ⊢ ( ( 2  /  𝐸 )  ∈  ℝ+  →  ( ( 1  +  ( 2  /  𝐸 ) )  +  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 ) )  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 199 | 175 198 | syl | ⊢ ( 𝜑  →  ( ( 1  +  ( 2  /  𝐸 ) )  +  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 ) )  <  ( exp ‘ ( 2  /  𝐸 ) ) ) | 
						
							| 200 | 199 3 | breqtrrdi | ⊢ ( 𝜑  →  ( ( 1  +  ( 2  /  𝐸 ) )  +  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 ) )  <  𝑋 ) | 
						
							| 201 | 191 196 91 197 200 | lttrd | ⊢ ( 𝜑  →  ( ( ( 2  /  𝐸 ) ↑ 2 )  /  2 )  <  𝑋 ) | 
						
							| 202 | 189 201 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 )  /  𝐸 )  <  𝑋 ) | 
						
							| 203 | 73 71 90 202 | ltdiv23d | ⊢ ( 𝜑  →  ( ( 2  /  𝐸 )  /  𝑋 )  <  𝐸 ) | 
						
							| 204 | 172 203 | eqbrtrd | ⊢ ( 𝜑  →  ( ( log ‘ 𝑋 )  /  𝑋 )  <  𝐸 ) | 
						
							| 205 | 16 155 18 168 204 | lttrd | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  /  𝑁 )  <  𝐸 ) | 
						
							| 206 | 16 18 205 | ltled | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  /  𝑁 )  ≤  𝐸 ) | 
						
							| 207 | 14 16 18 153 206 | letrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑅 ‘ 𝑁 )  /  𝑁 ) )  ≤  𝐸 ) |