Metamath Proof Explorer


Theorem pntpbnd1a

Description: Lemma for pntpbnd . (Contributed by Mario Carneiro, 11-Apr-2016) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020)

Ref Expression
Hypotheses pntpbnd.r R = a + ψ a a
pntpbnd1.e φ E 0 1
pntpbnd1.x X = e 2 E
pntpbnd1.y φ Y X +∞
pntpbnd1a.1 φ N
pntpbnd1a.2 φ Y < N N K Y
pntpbnd1a.3 φ R N R N + 1 R N
Assertion pntpbnd1a φ R N N E

Proof

Step Hyp Ref Expression
1 pntpbnd.r R = a + ψ a a
2 pntpbnd1.e φ E 0 1
3 pntpbnd1.x X = e 2 E
4 pntpbnd1.y φ Y X +∞
5 pntpbnd1a.1 φ N
6 pntpbnd1a.2 φ Y < N N K Y
7 pntpbnd1a.3 φ R N R N + 1 R N
8 5 nnrpd φ N +
9 1 pntrf R : +
10 9 ffvelrni N + R N
11 8 10 syl φ R N
12 11 8 rerpdivcld φ R N N
13 12 recnd φ R N N
14 13 abscld φ R N N
15 8 relogcld φ log N
16 15 8 rerpdivcld φ log N N
17 ioossre 0 1
18 17 2 sselid φ E
19 11 recnd φ R N
20 5 nnred φ N
21 20 recnd φ N
22 5 nnne0d φ N 0
23 19 21 22 absdivd φ R N N = R N N
24 5 nnnn0d φ N 0
25 24 nn0ge0d φ 0 N
26 20 25 absidd φ N = N
27 26 oveq2d φ R N N = R N N
28 23 27 eqtrd φ R N N = R N N
29 19 abscld φ R N
30 5 peano2nnd φ N + 1
31 vmacl N + 1 Λ N + 1
32 30 31 syl φ Λ N + 1
33 peano2rem Λ N + 1 Λ N + 1 1
34 32 33 syl φ Λ N + 1 1
35 34 recnd φ Λ N + 1 1
36 35 abscld φ Λ N + 1 1
37 30 nnrpd φ N + 1 +
38 1 pntrval N + 1 + R N + 1 = ψ N + 1 N + 1
39 37 38 syl φ R N + 1 = ψ N + 1 N + 1
40 1 pntrval N + R N = ψ N N
41 8 40 syl φ R N = ψ N N
42 39 41 oveq12d φ R N + 1 R N = ψ N + 1 - N + 1 - ψ N N
43 peano2re N N + 1
44 20 43 syl φ N + 1
45 chpcl N + 1 ψ N + 1
46 44 45 syl φ ψ N + 1
47 46 recnd φ ψ N + 1
48 44 recnd φ N + 1
49 chpcl N ψ N
50 20 49 syl φ ψ N
51 50 recnd φ ψ N
52 47 48 51 21 sub4d φ ψ N + 1 - N + 1 - ψ N N = ψ N + 1 - ψ N - N + 1 - N
53 32 recnd φ Λ N + 1
54 chpp1 N 0 ψ N + 1 = ψ N + Λ N + 1
55 24 54 syl φ ψ N + 1 = ψ N + Λ N + 1
56 51 53 55 mvrladdd φ ψ N + 1 ψ N = Λ N + 1
57 ax-1cn 1
58 pncan2 N 1 N + 1 - N = 1
59 21 57 58 sylancl φ N + 1 - N = 1
60 56 59 oveq12d φ ψ N + 1 - ψ N - N + 1 - N = Λ N + 1 1
61 42 52 60 3eqtrd φ R N + 1 R N = Λ N + 1 1
62 61 fveq2d φ R N + 1 R N = Λ N + 1 1
63 7 62 breqtrd φ R N Λ N + 1 1
64 1red φ 1
65 64 15 resubcld φ 1 log N
66 0red φ 0
67 2re 2
68 eliooord E 0 1 0 < E E < 1
69 2 68 syl φ 0 < E E < 1
70 69 simpld φ 0 < E
71 18 70 elrpd φ E +
72 rerpdivcl 2 E + 2 E
73 67 71 72 sylancr φ 2 E
74 67 a1i φ 2
75 1lt2 1 < 2
76 75 a1i φ 1 < 2
77 2cn 2
78 77 div1i 2 1 = 2
79 69 simprd φ E < 1
80 0lt1 0 < 1
81 80 a1i φ 0 < 1
82 2pos 0 < 2
83 82 a1i φ 0 < 2
84 ltdiv2 E 0 < E 1 0 < 1 2 0 < 2 E < 1 2 1 < 2 E
85 18 70 64 81 74 83 84 syl222anc φ E < 1 2 1 < 2 E
86 79 85 mpbid φ 2 1 < 2 E
87 78 86 eqbrtrrid φ 2 < 2 E
88 64 74 73 76 87 lttrd φ 1 < 2 E
89 73 rpefcld φ e 2 E +
90 3 89 eqeltrid φ X +
91 90 rpred φ X
92 90 rpxrd φ X *
93 elioopnf X * Y X +∞ Y X < Y
94 92 93 syl φ Y X +∞ Y X < Y
95 4 94 mpbid φ Y X < Y
96 95 simpld φ Y
97 95 simprd φ X < Y
98 6 simpld φ Y < N
99 91 96 20 97 98 lttrd φ X < N
100 3 99 eqbrtrrid φ e 2 E < N
101 8 reeflogd φ e log N = N
102 100 101 breqtrrd φ e 2 E < e log N
103 eflt 2 E log N 2 E < log N e 2 E < e log N
104 73 15 103 syl2anc φ 2 E < log N e 2 E < e log N
105 102 104 mpbird φ 2 E < log N
106 64 73 15 88 105 lttrd φ 1 < log N
107 64 15 106 ltled φ 1 log N
108 1re 1
109 suble0 1 log N 1 log N 0 1 log N
110 108 15 109 sylancr φ 1 log N 0 1 log N
111 107 110 mpbird φ 1 log N 0
112 vmage0 N + 1 0 Λ N + 1
113 30 112 syl φ 0 Λ N + 1
114 65 66 32 111 113 letrd φ 1 log N Λ N + 1
115 37 relogcld φ log N + 1
116 readdcl 1 log N 1 + log N
117 108 15 116 sylancr φ 1 + log N
118 vmalelog N + 1 Λ N + 1 log N + 1
119 30 118 syl φ Λ N + 1 log N + 1
120 74 20 remulcld φ 2 N
121 epr e +
122 rpmulcl e + N + e N +
123 121 8 122 sylancr φ e N +
124 123 rpred φ e N
125 5 nnge1d φ 1 N
126 64 20 20 125 leadd2dd φ N + 1 N + N
127 21 2timesd φ 2 N = N + N
128 126 127 breqtrrd φ N + 1 2 N
129 ere e
130 egt2lt3 2 < e e < 3
131 130 simpli 2 < e
132 67 129 131 ltleii 2 e
133 132 a1i φ 2 e
134 129 a1i φ e
135 5 nngt0d φ 0 < N
136 lemul1 2 e N 0 < N 2 e 2 N e N
137 74 134 20 135 136 syl112anc φ 2 e 2 N e N
138 133 137 mpbid φ 2 N e N
139 44 120 124 128 138 letrd φ N + 1 e N
140 37 123 logled φ N + 1 e N log N + 1 log e N
141 139 140 mpbid φ log N + 1 log e N
142 relogmul e + N + log e N = log e + log N
143 121 8 142 sylancr φ log e N = log e + log N
144 loge log e = 1
145 144 oveq1i log e + log N = 1 + log N
146 143 145 eqtrdi φ log e N = 1 + log N
147 141 146 breqtrd φ log N + 1 1 + log N
148 32 115 117 119 147 letrd φ Λ N + 1 1 + log N
149 32 64 15 absdifled φ Λ N + 1 1 log N 1 log N Λ N + 1 Λ N + 1 1 + log N
150 114 148 149 mpbir2and φ Λ N + 1 1 log N
151 29 36 15 63 150 letrd φ R N log N
152 29 15 8 151 lediv1dd φ R N N log N N
153 28 152 eqbrtrd φ R N N log N N
154 90 relogcld φ log X
155 154 90 rerpdivcld φ log X X
156 64 73 88 ltled φ 1 2 E
157 efle 1 2 E 1 2 E e 1 e 2 E
158 108 73 157 sylancr φ 1 2 E e 1 e 2 E
159 156 158 mpbid φ e 1 e 2 E
160 df-e e = e 1
161 159 160 3 3brtr4g φ e X
162 144 107 eqbrtrid φ log e log N
163 logleb e + N + e N log e log N
164 121 8 163 sylancr φ e N log e log N
165 162 164 mpbird φ e N
166 logdivlt X e X N e N X < N log N N < log X X
167 91 161 20 165 166 syl22anc φ X < N log N N < log X X
168 99 167 mpbid φ log N N < log X X
169 3 fveq2i log X = log e 2 E
170 73 relogefd φ log e 2 E = 2 E
171 169 170 eqtrid φ log X = 2 E
172 171 oveq1d φ log X X = 2 E X
173 2rp 2 +
174 rpdivcl 2 + E + 2 E +
175 173 71 174 sylancr φ 2 E +
176 175 rpcnd φ 2 E
177 176 sqvald φ 2 E 2 = 2 E 2 E
178 2cnd φ 2
179 71 rpcnne0d φ E E 0
180 div12 2 E 2 E E 0 2 E 2 E = 2 2 E E
181 176 178 179 180 syl3anc φ 2 E 2 E = 2 2 E E
182 177 181 eqtrd φ 2 E 2 = 2 2 E E
183 182 oveq1d φ 2 E 2 2 = 2 2 E E 2
184 175 71 rpdivcld φ 2 E E +
185 184 rpcnd φ 2 E E
186 2ne0 2 0
187 186 a1i φ 2 0
188 185 178 187 divcan3d φ 2 2 E E 2 = 2 E E
189 183 188 eqtrd φ 2 E 2 2 = 2 E E
190 73 resqcld φ 2 E 2
191 190 rehalfcld φ 2 E 2 2
192 1rp 1 +
193 rpaddcl 1 + 2 E + 1 + 2 E +
194 192 175 193 sylancr φ 1 + 2 E +
195 194 rpred φ 1 + 2 E
196 195 191 readdcld φ 1 + 2 E + 2 E 2 2
197 191 194 ltaddrp2d φ 2 E 2 2 < 1 + 2 E + 2 E 2 2
198 efgt1p2 2 E + 1 + 2 E + 2 E 2 2 < e 2 E
199 175 198 syl φ 1 + 2 E + 2 E 2 2 < e 2 E
200 199 3 breqtrrdi φ 1 + 2 E + 2 E 2 2 < X
201 191 196 91 197 200 lttrd φ 2 E 2 2 < X
202 189 201 eqbrtrrd φ 2 E E < X
203 73 71 90 202 ltdiv23d φ 2 E X < E
204 172 203 eqbrtrd φ log X X < E
205 16 155 18 168 204 lttrd φ log N N < E
206 16 18 205 ltled φ log N N E
207 14 16 18 153 206 letrd φ R N N E