| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntpbnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntpbnd1.e |  |-  ( ph -> E e. ( 0 (,) 1 ) ) | 
						
							| 3 |  | pntpbnd1.x |  |-  X = ( exp ` ( 2 / E ) ) | 
						
							| 4 |  | pntpbnd1.y |  |-  ( ph -> Y e. ( X (,) +oo ) ) | 
						
							| 5 |  | pntpbnd1a.1 |  |-  ( ph -> N e. NN ) | 
						
							| 6 |  | pntpbnd1a.2 |  |-  ( ph -> ( Y < N /\ N <_ ( K x. Y ) ) ) | 
						
							| 7 |  | pntpbnd1a.3 |  |-  ( ph -> ( abs ` ( R ` N ) ) <_ ( abs ` ( ( R ` ( N + 1 ) ) - ( R ` N ) ) ) ) | 
						
							| 8 | 5 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 9 | 1 | pntrf |  |-  R : RR+ --> RR | 
						
							| 10 | 9 | ffvelcdmi |  |-  ( N e. RR+ -> ( R ` N ) e. RR ) | 
						
							| 11 | 8 10 | syl |  |-  ( ph -> ( R ` N ) e. RR ) | 
						
							| 12 | 11 8 | rerpdivcld |  |-  ( ph -> ( ( R ` N ) / N ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ph -> ( ( R ` N ) / N ) e. CC ) | 
						
							| 14 | 13 | abscld |  |-  ( ph -> ( abs ` ( ( R ` N ) / N ) ) e. RR ) | 
						
							| 15 | 8 | relogcld |  |-  ( ph -> ( log ` N ) e. RR ) | 
						
							| 16 | 15 8 | rerpdivcld |  |-  ( ph -> ( ( log ` N ) / N ) e. RR ) | 
						
							| 17 |  | ioossre |  |-  ( 0 (,) 1 ) C_ RR | 
						
							| 18 | 17 2 | sselid |  |-  ( ph -> E e. RR ) | 
						
							| 19 | 11 | recnd |  |-  ( ph -> ( R ` N ) e. CC ) | 
						
							| 20 | 5 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 22 | 5 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 23 | 19 21 22 | absdivd |  |-  ( ph -> ( abs ` ( ( R ` N ) / N ) ) = ( ( abs ` ( R ` N ) ) / ( abs ` N ) ) ) | 
						
							| 24 | 5 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 25 | 24 | nn0ge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 26 | 20 25 | absidd |  |-  ( ph -> ( abs ` N ) = N ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ph -> ( ( abs ` ( R ` N ) ) / ( abs ` N ) ) = ( ( abs ` ( R ` N ) ) / N ) ) | 
						
							| 28 | 23 27 | eqtrd |  |-  ( ph -> ( abs ` ( ( R ` N ) / N ) ) = ( ( abs ` ( R ` N ) ) / N ) ) | 
						
							| 29 | 19 | abscld |  |-  ( ph -> ( abs ` ( R ` N ) ) e. RR ) | 
						
							| 30 | 5 | peano2nnd |  |-  ( ph -> ( N + 1 ) e. NN ) | 
						
							| 31 |  | vmacl |  |-  ( ( N + 1 ) e. NN -> ( Lam ` ( N + 1 ) ) e. RR ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> ( Lam ` ( N + 1 ) ) e. RR ) | 
						
							| 33 |  | peano2rem |  |-  ( ( Lam ` ( N + 1 ) ) e. RR -> ( ( Lam ` ( N + 1 ) ) - 1 ) e. RR ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( ( Lam ` ( N + 1 ) ) - 1 ) e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( ph -> ( ( Lam ` ( N + 1 ) ) - 1 ) e. CC ) | 
						
							| 36 | 35 | abscld |  |-  ( ph -> ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) e. RR ) | 
						
							| 37 | 30 | nnrpd |  |-  ( ph -> ( N + 1 ) e. RR+ ) | 
						
							| 38 | 1 | pntrval |  |-  ( ( N + 1 ) e. RR+ -> ( R ` ( N + 1 ) ) = ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> ( R ` ( N + 1 ) ) = ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) ) | 
						
							| 40 | 1 | pntrval |  |-  ( N e. RR+ -> ( R ` N ) = ( ( psi ` N ) - N ) ) | 
						
							| 41 | 8 40 | syl |  |-  ( ph -> ( R ` N ) = ( ( psi ` N ) - N ) ) | 
						
							| 42 | 39 41 | oveq12d |  |-  ( ph -> ( ( R ` ( N + 1 ) ) - ( R ` N ) ) = ( ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) - ( ( psi ` N ) - N ) ) ) | 
						
							| 43 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 44 | 20 43 | syl |  |-  ( ph -> ( N + 1 ) e. RR ) | 
						
							| 45 |  | chpcl |  |-  ( ( N + 1 ) e. RR -> ( psi ` ( N + 1 ) ) e. RR ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> ( psi ` ( N + 1 ) ) e. RR ) | 
						
							| 47 | 46 | recnd |  |-  ( ph -> ( psi ` ( N + 1 ) ) e. CC ) | 
						
							| 48 | 44 | recnd |  |-  ( ph -> ( N + 1 ) e. CC ) | 
						
							| 49 |  | chpcl |  |-  ( N e. RR -> ( psi ` N ) e. RR ) | 
						
							| 50 | 20 49 | syl |  |-  ( ph -> ( psi ` N ) e. RR ) | 
						
							| 51 | 50 | recnd |  |-  ( ph -> ( psi ` N ) e. CC ) | 
						
							| 52 | 47 48 51 21 | sub4d |  |-  ( ph -> ( ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) - ( ( psi ` N ) - N ) ) = ( ( ( psi ` ( N + 1 ) ) - ( psi ` N ) ) - ( ( N + 1 ) - N ) ) ) | 
						
							| 53 | 32 | recnd |  |-  ( ph -> ( Lam ` ( N + 1 ) ) e. CC ) | 
						
							| 54 |  | chpp1 |  |-  ( N e. NN0 -> ( psi ` ( N + 1 ) ) = ( ( psi ` N ) + ( Lam ` ( N + 1 ) ) ) ) | 
						
							| 55 | 24 54 | syl |  |-  ( ph -> ( psi ` ( N + 1 ) ) = ( ( psi ` N ) + ( Lam ` ( N + 1 ) ) ) ) | 
						
							| 56 | 51 53 55 | mvrladdd |  |-  ( ph -> ( ( psi ` ( N + 1 ) ) - ( psi ` N ) ) = ( Lam ` ( N + 1 ) ) ) | 
						
							| 57 |  | ax-1cn |  |-  1 e. CC | 
						
							| 58 |  | pncan2 |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - N ) = 1 ) | 
						
							| 59 | 21 57 58 | sylancl |  |-  ( ph -> ( ( N + 1 ) - N ) = 1 ) | 
						
							| 60 | 56 59 | oveq12d |  |-  ( ph -> ( ( ( psi ` ( N + 1 ) ) - ( psi ` N ) ) - ( ( N + 1 ) - N ) ) = ( ( Lam ` ( N + 1 ) ) - 1 ) ) | 
						
							| 61 | 42 52 60 | 3eqtrd |  |-  ( ph -> ( ( R ` ( N + 1 ) ) - ( R ` N ) ) = ( ( Lam ` ( N + 1 ) ) - 1 ) ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ph -> ( abs ` ( ( R ` ( N + 1 ) ) - ( R ` N ) ) ) = ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) ) | 
						
							| 63 | 7 62 | breqtrd |  |-  ( ph -> ( abs ` ( R ` N ) ) <_ ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) ) | 
						
							| 64 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 65 | 64 15 | resubcld |  |-  ( ph -> ( 1 - ( log ` N ) ) e. RR ) | 
						
							| 66 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 67 |  | 2re |  |-  2 e. RR | 
						
							| 68 |  | eliooord |  |-  ( E e. ( 0 (,) 1 ) -> ( 0 < E /\ E < 1 ) ) | 
						
							| 69 | 2 68 | syl |  |-  ( ph -> ( 0 < E /\ E < 1 ) ) | 
						
							| 70 | 69 | simpld |  |-  ( ph -> 0 < E ) | 
						
							| 71 | 18 70 | elrpd |  |-  ( ph -> E e. RR+ ) | 
						
							| 72 |  | rerpdivcl |  |-  ( ( 2 e. RR /\ E e. RR+ ) -> ( 2 / E ) e. RR ) | 
						
							| 73 | 67 71 72 | sylancr |  |-  ( ph -> ( 2 / E ) e. RR ) | 
						
							| 74 | 67 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 75 |  | 1lt2 |  |-  1 < 2 | 
						
							| 76 | 75 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 77 |  | 2cn |  |-  2 e. CC | 
						
							| 78 | 77 | div1i |  |-  ( 2 / 1 ) = 2 | 
						
							| 79 | 69 | simprd |  |-  ( ph -> E < 1 ) | 
						
							| 80 |  | 0lt1 |  |-  0 < 1 | 
						
							| 81 | 80 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 82 |  | 2pos |  |-  0 < 2 | 
						
							| 83 | 82 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 84 |  | ltdiv2 |  |-  ( ( ( E e. RR /\ 0 < E ) /\ ( 1 e. RR /\ 0 < 1 ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( E < 1 <-> ( 2 / 1 ) < ( 2 / E ) ) ) | 
						
							| 85 | 18 70 64 81 74 83 84 | syl222anc |  |-  ( ph -> ( E < 1 <-> ( 2 / 1 ) < ( 2 / E ) ) ) | 
						
							| 86 | 79 85 | mpbid |  |-  ( ph -> ( 2 / 1 ) < ( 2 / E ) ) | 
						
							| 87 | 78 86 | eqbrtrrid |  |-  ( ph -> 2 < ( 2 / E ) ) | 
						
							| 88 | 64 74 73 76 87 | lttrd |  |-  ( ph -> 1 < ( 2 / E ) ) | 
						
							| 89 | 73 | rpefcld |  |-  ( ph -> ( exp ` ( 2 / E ) ) e. RR+ ) | 
						
							| 90 | 3 89 | eqeltrid |  |-  ( ph -> X e. RR+ ) | 
						
							| 91 | 90 | rpred |  |-  ( ph -> X e. RR ) | 
						
							| 92 | 90 | rpxrd |  |-  ( ph -> X e. RR* ) | 
						
							| 93 |  | elioopnf |  |-  ( X e. RR* -> ( Y e. ( X (,) +oo ) <-> ( Y e. RR /\ X < Y ) ) ) | 
						
							| 94 | 92 93 | syl |  |-  ( ph -> ( Y e. ( X (,) +oo ) <-> ( Y e. RR /\ X < Y ) ) ) | 
						
							| 95 | 4 94 | mpbid |  |-  ( ph -> ( Y e. RR /\ X < Y ) ) | 
						
							| 96 | 95 | simpld |  |-  ( ph -> Y e. RR ) | 
						
							| 97 | 95 | simprd |  |-  ( ph -> X < Y ) | 
						
							| 98 | 6 | simpld |  |-  ( ph -> Y < N ) | 
						
							| 99 | 91 96 20 97 98 | lttrd |  |-  ( ph -> X < N ) | 
						
							| 100 | 3 99 | eqbrtrrid |  |-  ( ph -> ( exp ` ( 2 / E ) ) < N ) | 
						
							| 101 | 8 | reeflogd |  |-  ( ph -> ( exp ` ( log ` N ) ) = N ) | 
						
							| 102 | 100 101 | breqtrrd |  |-  ( ph -> ( exp ` ( 2 / E ) ) < ( exp ` ( log ` N ) ) ) | 
						
							| 103 |  | eflt |  |-  ( ( ( 2 / E ) e. RR /\ ( log ` N ) e. RR ) -> ( ( 2 / E ) < ( log ` N ) <-> ( exp ` ( 2 / E ) ) < ( exp ` ( log ` N ) ) ) ) | 
						
							| 104 | 73 15 103 | syl2anc |  |-  ( ph -> ( ( 2 / E ) < ( log ` N ) <-> ( exp ` ( 2 / E ) ) < ( exp ` ( log ` N ) ) ) ) | 
						
							| 105 | 102 104 | mpbird |  |-  ( ph -> ( 2 / E ) < ( log ` N ) ) | 
						
							| 106 | 64 73 15 88 105 | lttrd |  |-  ( ph -> 1 < ( log ` N ) ) | 
						
							| 107 | 64 15 106 | ltled |  |-  ( ph -> 1 <_ ( log ` N ) ) | 
						
							| 108 |  | 1re |  |-  1 e. RR | 
						
							| 109 |  | suble0 |  |-  ( ( 1 e. RR /\ ( log ` N ) e. RR ) -> ( ( 1 - ( log ` N ) ) <_ 0 <-> 1 <_ ( log ` N ) ) ) | 
						
							| 110 | 108 15 109 | sylancr |  |-  ( ph -> ( ( 1 - ( log ` N ) ) <_ 0 <-> 1 <_ ( log ` N ) ) ) | 
						
							| 111 | 107 110 | mpbird |  |-  ( ph -> ( 1 - ( log ` N ) ) <_ 0 ) | 
						
							| 112 |  | vmage0 |  |-  ( ( N + 1 ) e. NN -> 0 <_ ( Lam ` ( N + 1 ) ) ) | 
						
							| 113 | 30 112 | syl |  |-  ( ph -> 0 <_ ( Lam ` ( N + 1 ) ) ) | 
						
							| 114 | 65 66 32 111 113 | letrd |  |-  ( ph -> ( 1 - ( log ` N ) ) <_ ( Lam ` ( N + 1 ) ) ) | 
						
							| 115 | 37 | relogcld |  |-  ( ph -> ( log ` ( N + 1 ) ) e. RR ) | 
						
							| 116 |  | readdcl |  |-  ( ( 1 e. RR /\ ( log ` N ) e. RR ) -> ( 1 + ( log ` N ) ) e. RR ) | 
						
							| 117 | 108 15 116 | sylancr |  |-  ( ph -> ( 1 + ( log ` N ) ) e. RR ) | 
						
							| 118 |  | vmalelog |  |-  ( ( N + 1 ) e. NN -> ( Lam ` ( N + 1 ) ) <_ ( log ` ( N + 1 ) ) ) | 
						
							| 119 | 30 118 | syl |  |-  ( ph -> ( Lam ` ( N + 1 ) ) <_ ( log ` ( N + 1 ) ) ) | 
						
							| 120 | 74 20 | remulcld |  |-  ( ph -> ( 2 x. N ) e. RR ) | 
						
							| 121 |  | epr |  |-  _e e. RR+ | 
						
							| 122 |  | rpmulcl |  |-  ( ( _e e. RR+ /\ N e. RR+ ) -> ( _e x. N ) e. RR+ ) | 
						
							| 123 | 121 8 122 | sylancr |  |-  ( ph -> ( _e x. N ) e. RR+ ) | 
						
							| 124 | 123 | rpred |  |-  ( ph -> ( _e x. N ) e. RR ) | 
						
							| 125 | 5 | nnge1d |  |-  ( ph -> 1 <_ N ) | 
						
							| 126 | 64 20 20 125 | leadd2dd |  |-  ( ph -> ( N + 1 ) <_ ( N + N ) ) | 
						
							| 127 | 21 | 2timesd |  |-  ( ph -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 128 | 126 127 | breqtrrd |  |-  ( ph -> ( N + 1 ) <_ ( 2 x. N ) ) | 
						
							| 129 |  | ere |  |-  _e e. RR | 
						
							| 130 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 131 | 130 | simpli |  |-  2 < _e | 
						
							| 132 | 67 129 131 | ltleii |  |-  2 <_ _e | 
						
							| 133 | 132 | a1i |  |-  ( ph -> 2 <_ _e ) | 
						
							| 134 | 129 | a1i |  |-  ( ph -> _e e. RR ) | 
						
							| 135 | 5 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 136 |  | lemul1 |  |-  ( ( 2 e. RR /\ _e e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 2 <_ _e <-> ( 2 x. N ) <_ ( _e x. N ) ) ) | 
						
							| 137 | 74 134 20 135 136 | syl112anc |  |-  ( ph -> ( 2 <_ _e <-> ( 2 x. N ) <_ ( _e x. N ) ) ) | 
						
							| 138 | 133 137 | mpbid |  |-  ( ph -> ( 2 x. N ) <_ ( _e x. N ) ) | 
						
							| 139 | 44 120 124 128 138 | letrd |  |-  ( ph -> ( N + 1 ) <_ ( _e x. N ) ) | 
						
							| 140 | 37 123 | logled |  |-  ( ph -> ( ( N + 1 ) <_ ( _e x. N ) <-> ( log ` ( N + 1 ) ) <_ ( log ` ( _e x. N ) ) ) ) | 
						
							| 141 | 139 140 | mpbid |  |-  ( ph -> ( log ` ( N + 1 ) ) <_ ( log ` ( _e x. N ) ) ) | 
						
							| 142 |  | relogmul |  |-  ( ( _e e. RR+ /\ N e. RR+ ) -> ( log ` ( _e x. N ) ) = ( ( log ` _e ) + ( log ` N ) ) ) | 
						
							| 143 | 121 8 142 | sylancr |  |-  ( ph -> ( log ` ( _e x. N ) ) = ( ( log ` _e ) + ( log ` N ) ) ) | 
						
							| 144 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 145 | 144 | oveq1i |  |-  ( ( log ` _e ) + ( log ` N ) ) = ( 1 + ( log ` N ) ) | 
						
							| 146 | 143 145 | eqtrdi |  |-  ( ph -> ( log ` ( _e x. N ) ) = ( 1 + ( log ` N ) ) ) | 
						
							| 147 | 141 146 | breqtrd |  |-  ( ph -> ( log ` ( N + 1 ) ) <_ ( 1 + ( log ` N ) ) ) | 
						
							| 148 | 32 115 117 119 147 | letrd |  |-  ( ph -> ( Lam ` ( N + 1 ) ) <_ ( 1 + ( log ` N ) ) ) | 
						
							| 149 | 32 64 15 | absdifled |  |-  ( ph -> ( ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) <_ ( log ` N ) <-> ( ( 1 - ( log ` N ) ) <_ ( Lam ` ( N + 1 ) ) /\ ( Lam ` ( N + 1 ) ) <_ ( 1 + ( log ` N ) ) ) ) ) | 
						
							| 150 | 114 148 149 | mpbir2and |  |-  ( ph -> ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) <_ ( log ` N ) ) | 
						
							| 151 | 29 36 15 63 150 | letrd |  |-  ( ph -> ( abs ` ( R ` N ) ) <_ ( log ` N ) ) | 
						
							| 152 | 29 15 8 151 | lediv1dd |  |-  ( ph -> ( ( abs ` ( R ` N ) ) / N ) <_ ( ( log ` N ) / N ) ) | 
						
							| 153 | 28 152 | eqbrtrd |  |-  ( ph -> ( abs ` ( ( R ` N ) / N ) ) <_ ( ( log ` N ) / N ) ) | 
						
							| 154 | 90 | relogcld |  |-  ( ph -> ( log ` X ) e. RR ) | 
						
							| 155 | 154 90 | rerpdivcld |  |-  ( ph -> ( ( log ` X ) / X ) e. RR ) | 
						
							| 156 | 64 73 88 | ltled |  |-  ( ph -> 1 <_ ( 2 / E ) ) | 
						
							| 157 |  | efle |  |-  ( ( 1 e. RR /\ ( 2 / E ) e. RR ) -> ( 1 <_ ( 2 / E ) <-> ( exp ` 1 ) <_ ( exp ` ( 2 / E ) ) ) ) | 
						
							| 158 | 108 73 157 | sylancr |  |-  ( ph -> ( 1 <_ ( 2 / E ) <-> ( exp ` 1 ) <_ ( exp ` ( 2 / E ) ) ) ) | 
						
							| 159 | 156 158 | mpbid |  |-  ( ph -> ( exp ` 1 ) <_ ( exp ` ( 2 / E ) ) ) | 
						
							| 160 |  | df-e |  |-  _e = ( exp ` 1 ) | 
						
							| 161 | 159 160 3 | 3brtr4g |  |-  ( ph -> _e <_ X ) | 
						
							| 162 | 144 107 | eqbrtrid |  |-  ( ph -> ( log ` _e ) <_ ( log ` N ) ) | 
						
							| 163 |  | logleb |  |-  ( ( _e e. RR+ /\ N e. RR+ ) -> ( _e <_ N <-> ( log ` _e ) <_ ( log ` N ) ) ) | 
						
							| 164 | 121 8 163 | sylancr |  |-  ( ph -> ( _e <_ N <-> ( log ` _e ) <_ ( log ` N ) ) ) | 
						
							| 165 | 162 164 | mpbird |  |-  ( ph -> _e <_ N ) | 
						
							| 166 |  | logdivlt |  |-  ( ( ( X e. RR /\ _e <_ X ) /\ ( N e. RR /\ _e <_ N ) ) -> ( X < N <-> ( ( log ` N ) / N ) < ( ( log ` X ) / X ) ) ) | 
						
							| 167 | 91 161 20 165 166 | syl22anc |  |-  ( ph -> ( X < N <-> ( ( log ` N ) / N ) < ( ( log ` X ) / X ) ) ) | 
						
							| 168 | 99 167 | mpbid |  |-  ( ph -> ( ( log ` N ) / N ) < ( ( log ` X ) / X ) ) | 
						
							| 169 | 3 | fveq2i |  |-  ( log ` X ) = ( log ` ( exp ` ( 2 / E ) ) ) | 
						
							| 170 | 73 | relogefd |  |-  ( ph -> ( log ` ( exp ` ( 2 / E ) ) ) = ( 2 / E ) ) | 
						
							| 171 | 169 170 | eqtrid |  |-  ( ph -> ( log ` X ) = ( 2 / E ) ) | 
						
							| 172 | 171 | oveq1d |  |-  ( ph -> ( ( log ` X ) / X ) = ( ( 2 / E ) / X ) ) | 
						
							| 173 |  | 2rp |  |-  2 e. RR+ | 
						
							| 174 |  | rpdivcl |  |-  ( ( 2 e. RR+ /\ E e. RR+ ) -> ( 2 / E ) e. RR+ ) | 
						
							| 175 | 173 71 174 | sylancr |  |-  ( ph -> ( 2 / E ) e. RR+ ) | 
						
							| 176 | 175 | rpcnd |  |-  ( ph -> ( 2 / E ) e. CC ) | 
						
							| 177 | 176 | sqvald |  |-  ( ph -> ( ( 2 / E ) ^ 2 ) = ( ( 2 / E ) x. ( 2 / E ) ) ) | 
						
							| 178 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 179 | 71 | rpcnne0d |  |-  ( ph -> ( E e. CC /\ E =/= 0 ) ) | 
						
							| 180 |  | div12 |  |-  ( ( ( 2 / E ) e. CC /\ 2 e. CC /\ ( E e. CC /\ E =/= 0 ) ) -> ( ( 2 / E ) x. ( 2 / E ) ) = ( 2 x. ( ( 2 / E ) / E ) ) ) | 
						
							| 181 | 176 178 179 180 | syl3anc |  |-  ( ph -> ( ( 2 / E ) x. ( 2 / E ) ) = ( 2 x. ( ( 2 / E ) / E ) ) ) | 
						
							| 182 | 177 181 | eqtrd |  |-  ( ph -> ( ( 2 / E ) ^ 2 ) = ( 2 x. ( ( 2 / E ) / E ) ) ) | 
						
							| 183 | 182 | oveq1d |  |-  ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) = ( ( 2 x. ( ( 2 / E ) / E ) ) / 2 ) ) | 
						
							| 184 | 175 71 | rpdivcld |  |-  ( ph -> ( ( 2 / E ) / E ) e. RR+ ) | 
						
							| 185 | 184 | rpcnd |  |-  ( ph -> ( ( 2 / E ) / E ) e. CC ) | 
						
							| 186 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 187 | 186 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 188 | 185 178 187 | divcan3d |  |-  ( ph -> ( ( 2 x. ( ( 2 / E ) / E ) ) / 2 ) = ( ( 2 / E ) / E ) ) | 
						
							| 189 | 183 188 | eqtrd |  |-  ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) = ( ( 2 / E ) / E ) ) | 
						
							| 190 | 73 | resqcld |  |-  ( ph -> ( ( 2 / E ) ^ 2 ) e. RR ) | 
						
							| 191 | 190 | rehalfcld |  |-  ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) e. RR ) | 
						
							| 192 |  | 1rp |  |-  1 e. RR+ | 
						
							| 193 |  | rpaddcl |  |-  ( ( 1 e. RR+ /\ ( 2 / E ) e. RR+ ) -> ( 1 + ( 2 / E ) ) e. RR+ ) | 
						
							| 194 | 192 175 193 | sylancr |  |-  ( ph -> ( 1 + ( 2 / E ) ) e. RR+ ) | 
						
							| 195 | 194 | rpred |  |-  ( ph -> ( 1 + ( 2 / E ) ) e. RR ) | 
						
							| 196 | 195 191 | readdcld |  |-  ( ph -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) e. RR ) | 
						
							| 197 | 191 194 | ltaddrp2d |  |-  ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) < ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) ) | 
						
							| 198 |  | efgt1p2 |  |-  ( ( 2 / E ) e. RR+ -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) < ( exp ` ( 2 / E ) ) ) | 
						
							| 199 | 175 198 | syl |  |-  ( ph -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) < ( exp ` ( 2 / E ) ) ) | 
						
							| 200 | 199 3 | breqtrrdi |  |-  ( ph -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) < X ) | 
						
							| 201 | 191 196 91 197 200 | lttrd |  |-  ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) < X ) | 
						
							| 202 | 189 201 | eqbrtrrd |  |-  ( ph -> ( ( 2 / E ) / E ) < X ) | 
						
							| 203 | 73 71 90 202 | ltdiv23d |  |-  ( ph -> ( ( 2 / E ) / X ) < E ) | 
						
							| 204 | 172 203 | eqbrtrd |  |-  ( ph -> ( ( log ` X ) / X ) < E ) | 
						
							| 205 | 16 155 18 168 204 | lttrd |  |-  ( ph -> ( ( log ` N ) / N ) < E ) | 
						
							| 206 | 16 18 205 | ltled |  |-  ( ph -> ( ( log ` N ) / N ) <_ E ) | 
						
							| 207 | 14 16 18 153 206 | letrd |  |-  ( ph -> ( abs ` ( ( R ` N ) / N ) ) <_ E ) |