Step |
Hyp |
Ref |
Expression |
1 |
|
pntpbnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntpbnd1.e |
|- ( ph -> E e. ( 0 (,) 1 ) ) |
3 |
|
pntpbnd1.x |
|- X = ( exp ` ( 2 / E ) ) |
4 |
|
pntpbnd1.y |
|- ( ph -> Y e. ( X (,) +oo ) ) |
5 |
|
pntpbnd1a.1 |
|- ( ph -> N e. NN ) |
6 |
|
pntpbnd1a.2 |
|- ( ph -> ( Y < N /\ N <_ ( K x. Y ) ) ) |
7 |
|
pntpbnd1a.3 |
|- ( ph -> ( abs ` ( R ` N ) ) <_ ( abs ` ( ( R ` ( N + 1 ) ) - ( R ` N ) ) ) ) |
8 |
5
|
nnrpd |
|- ( ph -> N e. RR+ ) |
9 |
1
|
pntrf |
|- R : RR+ --> RR |
10 |
9
|
ffvelrni |
|- ( N e. RR+ -> ( R ` N ) e. RR ) |
11 |
8 10
|
syl |
|- ( ph -> ( R ` N ) e. RR ) |
12 |
11 8
|
rerpdivcld |
|- ( ph -> ( ( R ` N ) / N ) e. RR ) |
13 |
12
|
recnd |
|- ( ph -> ( ( R ` N ) / N ) e. CC ) |
14 |
13
|
abscld |
|- ( ph -> ( abs ` ( ( R ` N ) / N ) ) e. RR ) |
15 |
8
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
16 |
15 8
|
rerpdivcld |
|- ( ph -> ( ( log ` N ) / N ) e. RR ) |
17 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
18 |
17 2
|
sselid |
|- ( ph -> E e. RR ) |
19 |
11
|
recnd |
|- ( ph -> ( R ` N ) e. CC ) |
20 |
5
|
nnred |
|- ( ph -> N e. RR ) |
21 |
20
|
recnd |
|- ( ph -> N e. CC ) |
22 |
5
|
nnne0d |
|- ( ph -> N =/= 0 ) |
23 |
19 21 22
|
absdivd |
|- ( ph -> ( abs ` ( ( R ` N ) / N ) ) = ( ( abs ` ( R ` N ) ) / ( abs ` N ) ) ) |
24 |
5
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
25 |
24
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
26 |
20 25
|
absidd |
|- ( ph -> ( abs ` N ) = N ) |
27 |
26
|
oveq2d |
|- ( ph -> ( ( abs ` ( R ` N ) ) / ( abs ` N ) ) = ( ( abs ` ( R ` N ) ) / N ) ) |
28 |
23 27
|
eqtrd |
|- ( ph -> ( abs ` ( ( R ` N ) / N ) ) = ( ( abs ` ( R ` N ) ) / N ) ) |
29 |
19
|
abscld |
|- ( ph -> ( abs ` ( R ` N ) ) e. RR ) |
30 |
5
|
peano2nnd |
|- ( ph -> ( N + 1 ) e. NN ) |
31 |
|
vmacl |
|- ( ( N + 1 ) e. NN -> ( Lam ` ( N + 1 ) ) e. RR ) |
32 |
30 31
|
syl |
|- ( ph -> ( Lam ` ( N + 1 ) ) e. RR ) |
33 |
|
peano2rem |
|- ( ( Lam ` ( N + 1 ) ) e. RR -> ( ( Lam ` ( N + 1 ) ) - 1 ) e. RR ) |
34 |
32 33
|
syl |
|- ( ph -> ( ( Lam ` ( N + 1 ) ) - 1 ) e. RR ) |
35 |
34
|
recnd |
|- ( ph -> ( ( Lam ` ( N + 1 ) ) - 1 ) e. CC ) |
36 |
35
|
abscld |
|- ( ph -> ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) e. RR ) |
37 |
30
|
nnrpd |
|- ( ph -> ( N + 1 ) e. RR+ ) |
38 |
1
|
pntrval |
|- ( ( N + 1 ) e. RR+ -> ( R ` ( N + 1 ) ) = ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) ) |
39 |
37 38
|
syl |
|- ( ph -> ( R ` ( N + 1 ) ) = ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) ) |
40 |
1
|
pntrval |
|- ( N e. RR+ -> ( R ` N ) = ( ( psi ` N ) - N ) ) |
41 |
8 40
|
syl |
|- ( ph -> ( R ` N ) = ( ( psi ` N ) - N ) ) |
42 |
39 41
|
oveq12d |
|- ( ph -> ( ( R ` ( N + 1 ) ) - ( R ` N ) ) = ( ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) - ( ( psi ` N ) - N ) ) ) |
43 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
44 |
20 43
|
syl |
|- ( ph -> ( N + 1 ) e. RR ) |
45 |
|
chpcl |
|- ( ( N + 1 ) e. RR -> ( psi ` ( N + 1 ) ) e. RR ) |
46 |
44 45
|
syl |
|- ( ph -> ( psi ` ( N + 1 ) ) e. RR ) |
47 |
46
|
recnd |
|- ( ph -> ( psi ` ( N + 1 ) ) e. CC ) |
48 |
44
|
recnd |
|- ( ph -> ( N + 1 ) e. CC ) |
49 |
|
chpcl |
|- ( N e. RR -> ( psi ` N ) e. RR ) |
50 |
20 49
|
syl |
|- ( ph -> ( psi ` N ) e. RR ) |
51 |
50
|
recnd |
|- ( ph -> ( psi ` N ) e. CC ) |
52 |
47 48 51 21
|
sub4d |
|- ( ph -> ( ( ( psi ` ( N + 1 ) ) - ( N + 1 ) ) - ( ( psi ` N ) - N ) ) = ( ( ( psi ` ( N + 1 ) ) - ( psi ` N ) ) - ( ( N + 1 ) - N ) ) ) |
53 |
32
|
recnd |
|- ( ph -> ( Lam ` ( N + 1 ) ) e. CC ) |
54 |
|
chpp1 |
|- ( N e. NN0 -> ( psi ` ( N + 1 ) ) = ( ( psi ` N ) + ( Lam ` ( N + 1 ) ) ) ) |
55 |
24 54
|
syl |
|- ( ph -> ( psi ` ( N + 1 ) ) = ( ( psi ` N ) + ( Lam ` ( N + 1 ) ) ) ) |
56 |
51 53 55
|
mvrladdd |
|- ( ph -> ( ( psi ` ( N + 1 ) ) - ( psi ` N ) ) = ( Lam ` ( N + 1 ) ) ) |
57 |
|
ax-1cn |
|- 1 e. CC |
58 |
|
pncan2 |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - N ) = 1 ) |
59 |
21 57 58
|
sylancl |
|- ( ph -> ( ( N + 1 ) - N ) = 1 ) |
60 |
56 59
|
oveq12d |
|- ( ph -> ( ( ( psi ` ( N + 1 ) ) - ( psi ` N ) ) - ( ( N + 1 ) - N ) ) = ( ( Lam ` ( N + 1 ) ) - 1 ) ) |
61 |
42 52 60
|
3eqtrd |
|- ( ph -> ( ( R ` ( N + 1 ) ) - ( R ` N ) ) = ( ( Lam ` ( N + 1 ) ) - 1 ) ) |
62 |
61
|
fveq2d |
|- ( ph -> ( abs ` ( ( R ` ( N + 1 ) ) - ( R ` N ) ) ) = ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) ) |
63 |
7 62
|
breqtrd |
|- ( ph -> ( abs ` ( R ` N ) ) <_ ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) ) |
64 |
|
1red |
|- ( ph -> 1 e. RR ) |
65 |
64 15
|
resubcld |
|- ( ph -> ( 1 - ( log ` N ) ) e. RR ) |
66 |
|
0red |
|- ( ph -> 0 e. RR ) |
67 |
|
2re |
|- 2 e. RR |
68 |
|
eliooord |
|- ( E e. ( 0 (,) 1 ) -> ( 0 < E /\ E < 1 ) ) |
69 |
2 68
|
syl |
|- ( ph -> ( 0 < E /\ E < 1 ) ) |
70 |
69
|
simpld |
|- ( ph -> 0 < E ) |
71 |
18 70
|
elrpd |
|- ( ph -> E e. RR+ ) |
72 |
|
rerpdivcl |
|- ( ( 2 e. RR /\ E e. RR+ ) -> ( 2 / E ) e. RR ) |
73 |
67 71 72
|
sylancr |
|- ( ph -> ( 2 / E ) e. RR ) |
74 |
67
|
a1i |
|- ( ph -> 2 e. RR ) |
75 |
|
1lt2 |
|- 1 < 2 |
76 |
75
|
a1i |
|- ( ph -> 1 < 2 ) |
77 |
|
2cn |
|- 2 e. CC |
78 |
77
|
div1i |
|- ( 2 / 1 ) = 2 |
79 |
69
|
simprd |
|- ( ph -> E < 1 ) |
80 |
|
0lt1 |
|- 0 < 1 |
81 |
80
|
a1i |
|- ( ph -> 0 < 1 ) |
82 |
|
2pos |
|- 0 < 2 |
83 |
82
|
a1i |
|- ( ph -> 0 < 2 ) |
84 |
|
ltdiv2 |
|- ( ( ( E e. RR /\ 0 < E ) /\ ( 1 e. RR /\ 0 < 1 ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( E < 1 <-> ( 2 / 1 ) < ( 2 / E ) ) ) |
85 |
18 70 64 81 74 83 84
|
syl222anc |
|- ( ph -> ( E < 1 <-> ( 2 / 1 ) < ( 2 / E ) ) ) |
86 |
79 85
|
mpbid |
|- ( ph -> ( 2 / 1 ) < ( 2 / E ) ) |
87 |
78 86
|
eqbrtrrid |
|- ( ph -> 2 < ( 2 / E ) ) |
88 |
64 74 73 76 87
|
lttrd |
|- ( ph -> 1 < ( 2 / E ) ) |
89 |
73
|
rpefcld |
|- ( ph -> ( exp ` ( 2 / E ) ) e. RR+ ) |
90 |
3 89
|
eqeltrid |
|- ( ph -> X e. RR+ ) |
91 |
90
|
rpred |
|- ( ph -> X e. RR ) |
92 |
90
|
rpxrd |
|- ( ph -> X e. RR* ) |
93 |
|
elioopnf |
|- ( X e. RR* -> ( Y e. ( X (,) +oo ) <-> ( Y e. RR /\ X < Y ) ) ) |
94 |
92 93
|
syl |
|- ( ph -> ( Y e. ( X (,) +oo ) <-> ( Y e. RR /\ X < Y ) ) ) |
95 |
4 94
|
mpbid |
|- ( ph -> ( Y e. RR /\ X < Y ) ) |
96 |
95
|
simpld |
|- ( ph -> Y e. RR ) |
97 |
95
|
simprd |
|- ( ph -> X < Y ) |
98 |
6
|
simpld |
|- ( ph -> Y < N ) |
99 |
91 96 20 97 98
|
lttrd |
|- ( ph -> X < N ) |
100 |
3 99
|
eqbrtrrid |
|- ( ph -> ( exp ` ( 2 / E ) ) < N ) |
101 |
8
|
reeflogd |
|- ( ph -> ( exp ` ( log ` N ) ) = N ) |
102 |
100 101
|
breqtrrd |
|- ( ph -> ( exp ` ( 2 / E ) ) < ( exp ` ( log ` N ) ) ) |
103 |
|
eflt |
|- ( ( ( 2 / E ) e. RR /\ ( log ` N ) e. RR ) -> ( ( 2 / E ) < ( log ` N ) <-> ( exp ` ( 2 / E ) ) < ( exp ` ( log ` N ) ) ) ) |
104 |
73 15 103
|
syl2anc |
|- ( ph -> ( ( 2 / E ) < ( log ` N ) <-> ( exp ` ( 2 / E ) ) < ( exp ` ( log ` N ) ) ) ) |
105 |
102 104
|
mpbird |
|- ( ph -> ( 2 / E ) < ( log ` N ) ) |
106 |
64 73 15 88 105
|
lttrd |
|- ( ph -> 1 < ( log ` N ) ) |
107 |
64 15 106
|
ltled |
|- ( ph -> 1 <_ ( log ` N ) ) |
108 |
|
1re |
|- 1 e. RR |
109 |
|
suble0 |
|- ( ( 1 e. RR /\ ( log ` N ) e. RR ) -> ( ( 1 - ( log ` N ) ) <_ 0 <-> 1 <_ ( log ` N ) ) ) |
110 |
108 15 109
|
sylancr |
|- ( ph -> ( ( 1 - ( log ` N ) ) <_ 0 <-> 1 <_ ( log ` N ) ) ) |
111 |
107 110
|
mpbird |
|- ( ph -> ( 1 - ( log ` N ) ) <_ 0 ) |
112 |
|
vmage0 |
|- ( ( N + 1 ) e. NN -> 0 <_ ( Lam ` ( N + 1 ) ) ) |
113 |
30 112
|
syl |
|- ( ph -> 0 <_ ( Lam ` ( N + 1 ) ) ) |
114 |
65 66 32 111 113
|
letrd |
|- ( ph -> ( 1 - ( log ` N ) ) <_ ( Lam ` ( N + 1 ) ) ) |
115 |
37
|
relogcld |
|- ( ph -> ( log ` ( N + 1 ) ) e. RR ) |
116 |
|
readdcl |
|- ( ( 1 e. RR /\ ( log ` N ) e. RR ) -> ( 1 + ( log ` N ) ) e. RR ) |
117 |
108 15 116
|
sylancr |
|- ( ph -> ( 1 + ( log ` N ) ) e. RR ) |
118 |
|
vmalelog |
|- ( ( N + 1 ) e. NN -> ( Lam ` ( N + 1 ) ) <_ ( log ` ( N + 1 ) ) ) |
119 |
30 118
|
syl |
|- ( ph -> ( Lam ` ( N + 1 ) ) <_ ( log ` ( N + 1 ) ) ) |
120 |
74 20
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
121 |
|
epr |
|- _e e. RR+ |
122 |
|
rpmulcl |
|- ( ( _e e. RR+ /\ N e. RR+ ) -> ( _e x. N ) e. RR+ ) |
123 |
121 8 122
|
sylancr |
|- ( ph -> ( _e x. N ) e. RR+ ) |
124 |
123
|
rpred |
|- ( ph -> ( _e x. N ) e. RR ) |
125 |
5
|
nnge1d |
|- ( ph -> 1 <_ N ) |
126 |
64 20 20 125
|
leadd2dd |
|- ( ph -> ( N + 1 ) <_ ( N + N ) ) |
127 |
21
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
128 |
126 127
|
breqtrrd |
|- ( ph -> ( N + 1 ) <_ ( 2 x. N ) ) |
129 |
|
ere |
|- _e e. RR |
130 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
131 |
130
|
simpli |
|- 2 < _e |
132 |
67 129 131
|
ltleii |
|- 2 <_ _e |
133 |
132
|
a1i |
|- ( ph -> 2 <_ _e ) |
134 |
129
|
a1i |
|- ( ph -> _e e. RR ) |
135 |
5
|
nngt0d |
|- ( ph -> 0 < N ) |
136 |
|
lemul1 |
|- ( ( 2 e. RR /\ _e e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 2 <_ _e <-> ( 2 x. N ) <_ ( _e x. N ) ) ) |
137 |
74 134 20 135 136
|
syl112anc |
|- ( ph -> ( 2 <_ _e <-> ( 2 x. N ) <_ ( _e x. N ) ) ) |
138 |
133 137
|
mpbid |
|- ( ph -> ( 2 x. N ) <_ ( _e x. N ) ) |
139 |
44 120 124 128 138
|
letrd |
|- ( ph -> ( N + 1 ) <_ ( _e x. N ) ) |
140 |
37 123
|
logled |
|- ( ph -> ( ( N + 1 ) <_ ( _e x. N ) <-> ( log ` ( N + 1 ) ) <_ ( log ` ( _e x. N ) ) ) ) |
141 |
139 140
|
mpbid |
|- ( ph -> ( log ` ( N + 1 ) ) <_ ( log ` ( _e x. N ) ) ) |
142 |
|
relogmul |
|- ( ( _e e. RR+ /\ N e. RR+ ) -> ( log ` ( _e x. N ) ) = ( ( log ` _e ) + ( log ` N ) ) ) |
143 |
121 8 142
|
sylancr |
|- ( ph -> ( log ` ( _e x. N ) ) = ( ( log ` _e ) + ( log ` N ) ) ) |
144 |
|
loge |
|- ( log ` _e ) = 1 |
145 |
144
|
oveq1i |
|- ( ( log ` _e ) + ( log ` N ) ) = ( 1 + ( log ` N ) ) |
146 |
143 145
|
eqtrdi |
|- ( ph -> ( log ` ( _e x. N ) ) = ( 1 + ( log ` N ) ) ) |
147 |
141 146
|
breqtrd |
|- ( ph -> ( log ` ( N + 1 ) ) <_ ( 1 + ( log ` N ) ) ) |
148 |
32 115 117 119 147
|
letrd |
|- ( ph -> ( Lam ` ( N + 1 ) ) <_ ( 1 + ( log ` N ) ) ) |
149 |
32 64 15
|
absdifled |
|- ( ph -> ( ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) <_ ( log ` N ) <-> ( ( 1 - ( log ` N ) ) <_ ( Lam ` ( N + 1 ) ) /\ ( Lam ` ( N + 1 ) ) <_ ( 1 + ( log ` N ) ) ) ) ) |
150 |
114 148 149
|
mpbir2and |
|- ( ph -> ( abs ` ( ( Lam ` ( N + 1 ) ) - 1 ) ) <_ ( log ` N ) ) |
151 |
29 36 15 63 150
|
letrd |
|- ( ph -> ( abs ` ( R ` N ) ) <_ ( log ` N ) ) |
152 |
29 15 8 151
|
lediv1dd |
|- ( ph -> ( ( abs ` ( R ` N ) ) / N ) <_ ( ( log ` N ) / N ) ) |
153 |
28 152
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( R ` N ) / N ) ) <_ ( ( log ` N ) / N ) ) |
154 |
90
|
relogcld |
|- ( ph -> ( log ` X ) e. RR ) |
155 |
154 90
|
rerpdivcld |
|- ( ph -> ( ( log ` X ) / X ) e. RR ) |
156 |
64 73 88
|
ltled |
|- ( ph -> 1 <_ ( 2 / E ) ) |
157 |
|
efle |
|- ( ( 1 e. RR /\ ( 2 / E ) e. RR ) -> ( 1 <_ ( 2 / E ) <-> ( exp ` 1 ) <_ ( exp ` ( 2 / E ) ) ) ) |
158 |
108 73 157
|
sylancr |
|- ( ph -> ( 1 <_ ( 2 / E ) <-> ( exp ` 1 ) <_ ( exp ` ( 2 / E ) ) ) ) |
159 |
156 158
|
mpbid |
|- ( ph -> ( exp ` 1 ) <_ ( exp ` ( 2 / E ) ) ) |
160 |
|
df-e |
|- _e = ( exp ` 1 ) |
161 |
159 160 3
|
3brtr4g |
|- ( ph -> _e <_ X ) |
162 |
144 107
|
eqbrtrid |
|- ( ph -> ( log ` _e ) <_ ( log ` N ) ) |
163 |
|
logleb |
|- ( ( _e e. RR+ /\ N e. RR+ ) -> ( _e <_ N <-> ( log ` _e ) <_ ( log ` N ) ) ) |
164 |
121 8 163
|
sylancr |
|- ( ph -> ( _e <_ N <-> ( log ` _e ) <_ ( log ` N ) ) ) |
165 |
162 164
|
mpbird |
|- ( ph -> _e <_ N ) |
166 |
|
logdivlt |
|- ( ( ( X e. RR /\ _e <_ X ) /\ ( N e. RR /\ _e <_ N ) ) -> ( X < N <-> ( ( log ` N ) / N ) < ( ( log ` X ) / X ) ) ) |
167 |
91 161 20 165 166
|
syl22anc |
|- ( ph -> ( X < N <-> ( ( log ` N ) / N ) < ( ( log ` X ) / X ) ) ) |
168 |
99 167
|
mpbid |
|- ( ph -> ( ( log ` N ) / N ) < ( ( log ` X ) / X ) ) |
169 |
3
|
fveq2i |
|- ( log ` X ) = ( log ` ( exp ` ( 2 / E ) ) ) |
170 |
73
|
relogefd |
|- ( ph -> ( log ` ( exp ` ( 2 / E ) ) ) = ( 2 / E ) ) |
171 |
169 170
|
eqtrid |
|- ( ph -> ( log ` X ) = ( 2 / E ) ) |
172 |
171
|
oveq1d |
|- ( ph -> ( ( log ` X ) / X ) = ( ( 2 / E ) / X ) ) |
173 |
|
2rp |
|- 2 e. RR+ |
174 |
|
rpdivcl |
|- ( ( 2 e. RR+ /\ E e. RR+ ) -> ( 2 / E ) e. RR+ ) |
175 |
173 71 174
|
sylancr |
|- ( ph -> ( 2 / E ) e. RR+ ) |
176 |
175
|
rpcnd |
|- ( ph -> ( 2 / E ) e. CC ) |
177 |
176
|
sqvald |
|- ( ph -> ( ( 2 / E ) ^ 2 ) = ( ( 2 / E ) x. ( 2 / E ) ) ) |
178 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
179 |
71
|
rpcnne0d |
|- ( ph -> ( E e. CC /\ E =/= 0 ) ) |
180 |
|
div12 |
|- ( ( ( 2 / E ) e. CC /\ 2 e. CC /\ ( E e. CC /\ E =/= 0 ) ) -> ( ( 2 / E ) x. ( 2 / E ) ) = ( 2 x. ( ( 2 / E ) / E ) ) ) |
181 |
176 178 179 180
|
syl3anc |
|- ( ph -> ( ( 2 / E ) x. ( 2 / E ) ) = ( 2 x. ( ( 2 / E ) / E ) ) ) |
182 |
177 181
|
eqtrd |
|- ( ph -> ( ( 2 / E ) ^ 2 ) = ( 2 x. ( ( 2 / E ) / E ) ) ) |
183 |
182
|
oveq1d |
|- ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) = ( ( 2 x. ( ( 2 / E ) / E ) ) / 2 ) ) |
184 |
175 71
|
rpdivcld |
|- ( ph -> ( ( 2 / E ) / E ) e. RR+ ) |
185 |
184
|
rpcnd |
|- ( ph -> ( ( 2 / E ) / E ) e. CC ) |
186 |
|
2ne0 |
|- 2 =/= 0 |
187 |
186
|
a1i |
|- ( ph -> 2 =/= 0 ) |
188 |
185 178 187
|
divcan3d |
|- ( ph -> ( ( 2 x. ( ( 2 / E ) / E ) ) / 2 ) = ( ( 2 / E ) / E ) ) |
189 |
183 188
|
eqtrd |
|- ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) = ( ( 2 / E ) / E ) ) |
190 |
73
|
resqcld |
|- ( ph -> ( ( 2 / E ) ^ 2 ) e. RR ) |
191 |
190
|
rehalfcld |
|- ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) e. RR ) |
192 |
|
1rp |
|- 1 e. RR+ |
193 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( 2 / E ) e. RR+ ) -> ( 1 + ( 2 / E ) ) e. RR+ ) |
194 |
192 175 193
|
sylancr |
|- ( ph -> ( 1 + ( 2 / E ) ) e. RR+ ) |
195 |
194
|
rpred |
|- ( ph -> ( 1 + ( 2 / E ) ) e. RR ) |
196 |
195 191
|
readdcld |
|- ( ph -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) e. RR ) |
197 |
191 194
|
ltaddrp2d |
|- ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) < ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) ) |
198 |
|
efgt1p2 |
|- ( ( 2 / E ) e. RR+ -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) < ( exp ` ( 2 / E ) ) ) |
199 |
175 198
|
syl |
|- ( ph -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) < ( exp ` ( 2 / E ) ) ) |
200 |
199 3
|
breqtrrdi |
|- ( ph -> ( ( 1 + ( 2 / E ) ) + ( ( ( 2 / E ) ^ 2 ) / 2 ) ) < X ) |
201 |
191 196 91 197 200
|
lttrd |
|- ( ph -> ( ( ( 2 / E ) ^ 2 ) / 2 ) < X ) |
202 |
189 201
|
eqbrtrrd |
|- ( ph -> ( ( 2 / E ) / E ) < X ) |
203 |
73 71 90 202
|
ltdiv23d |
|- ( ph -> ( ( 2 / E ) / X ) < E ) |
204 |
172 203
|
eqbrtrd |
|- ( ph -> ( ( log ` X ) / X ) < E ) |
205 |
16 155 18 168 204
|
lttrd |
|- ( ph -> ( ( log ` N ) / N ) < E ) |
206 |
16 18 205
|
ltled |
|- ( ph -> ( ( log ` N ) / N ) <_ E ) |
207 |
14 16 18 153 206
|
letrd |
|- ( ph -> ( abs ` ( ( R ` N ) / N ) ) <_ E ) |