Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
suble |
|- ( ( A e. RR /\ B e. RR /\ 0 e. RR ) -> ( ( A - B ) <_ 0 <-> ( A - 0 ) <_ B ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - B ) <_ 0 <-> ( A - 0 ) <_ B ) ) |
4 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
6 |
5
|
subid1d |
|- ( ( A e. RR /\ B e. RR ) -> ( A - 0 ) = A ) |
7 |
6
|
breq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - 0 ) <_ B <-> A <_ B ) ) |
8 |
3 7
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - B ) <_ 0 <-> A <_ B ) ) |