Metamath Proof Explorer


Theorem logdivlt

Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion logdivlt AeABeBA<BlogBB<logAA

Proof

Step Hyp Ref Expression
1 logdivlti ABeAA<BlogBB<logAA
2 1 ex ABeAA<BlogBB<logAA
3 2 3expa ABeAA<BlogBB<logAA
4 3 an32s AeABA<BlogBB<logAA
5 4 adantrr AeABeBA<BlogBB<logAA
6 fveq2 A=BlogA=logB
7 id A=BA=B
8 6 7 oveq12d A=BlogAA=logBB
9 8 eqcomd A=BlogBB=logAA
10 9 a1i AeABeBA=BlogBB=logAA
11 logdivlti BAeBB<AlogAA<logBB
12 11 ex BAeBB<AlogAA<logBB
13 12 3expa BAeBB<AlogAA<logBB
14 13 an32s BeBAB<AlogAA<logBB
15 14 adantrr BeBAeAB<AlogAA<logBB
16 15 ancoms AeABeBB<AlogAA<logBB
17 10 16 orim12d AeABeBA=BB<AlogBB=logAAlogAA<logBB
18 17 con3d AeABeB¬logBB=logAAlogAA<logBB¬A=BB<A
19 simpl BeBB
20 epos 0<e
21 0re 0
22 ere e
23 ltletr 0eB0<eeB0<B
24 21 22 23 mp3an12 B0<eeB0<B
25 20 24 mpani BeB0<B
26 25 imp BeB0<B
27 19 26 elrpd BeBB+
28 relogcl B+logB
29 rerpdivcl logBB+logBB
30 28 29 mpancom B+logBB
31 27 30 syl BeBlogBB
32 simpl AeAA
33 ltletr 0eA0<eeA0<A
34 21 22 33 mp3an12 A0<eeA0<A
35 20 34 mpani AeA0<A
36 35 imp AeA0<A
37 32 36 elrpd AeAA+
38 relogcl A+logA
39 rerpdivcl logAA+logAA
40 38 39 mpancom A+logAA
41 37 40 syl AeAlogAA
42 axlttri logBBlogAAlogBB<logAA¬logBB=logAAlogAA<logBB
43 31 41 42 syl2anr AeABeBlogBB<logAA¬logBB=logAAlogAA<logBB
44 axlttri ABA<B¬A=BB<A
45 44 ad2ant2r AeABeBA<B¬A=BB<A
46 18 43 45 3imtr4d AeABeBlogBB<logAAA<B
47 5 46 impbid AeABeBA<BlogBB<logAA