Metamath Proof Explorer


Theorem ltdiv2

Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005)

Ref Expression
Assertion ltdiv2 A0<AB0<BC0<CA<BCB<CA

Proof

Step Hyp Ref Expression
1 ltrec A0<AB0<BA<B1B<1A
2 1 3adant3 A0<AB0<BC0<CA<B1B<1A
3 gt0ne0 B0<BB0
4 rereccl BB01B
5 3 4 syldan B0<B1B
6 gt0ne0 A0<AA0
7 rereccl AA01A
8 6 7 syldan A0<A1A
9 ltmul2 1B1AC0<C1B<1AC1B<C1A
10 8 9 syl3an2 1BA0<AC0<C1B<1AC1B<C1A
11 5 10 syl3an1 B0<BA0<AC0<C1B<1AC1B<C1A
12 recn CC
13 12 adantr C0<CC
14 recn BB
15 14 adantr B0<BB
16 15 3 jca B0<BBB0
17 recn AA
18 17 adantr A0<AA
19 18 6 jca A0<AAA0
20 divrec CBB0CB=C1B
21 20 3expb CBB0CB=C1B
22 21 3adant3 CBB0AA0CB=C1B
23 divrec CAA0CA=C1A
24 23 3expb CAA0CA=C1A
25 24 3adant2 CBB0AA0CA=C1A
26 22 25 breq12d CBB0AA0CB<CAC1B<C1A
27 13 16 19 26 syl3an C0<CB0<BA0<ACB<CAC1B<C1A
28 27 3coml B0<BA0<AC0<CCB<CAC1B<C1A
29 11 28 bitr4d B0<BA0<AC0<C1B<1ACB<CA
30 29 3com12 A0<AB0<BC0<C1B<1ACB<CA
31 2 30 bitrd A0<AB0<BC0<CA<BCB<CA