| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntibnd.r |
|
| 2 |
|
pntibndlem1.1 |
|
| 3 |
|
pntibndlem1.l |
|
| 4 |
|
pntibndlem3.2 |
|
| 5 |
|
pntibndlem3.3 |
|
| 6 |
|
pntibndlem3.k |
|
| 7 |
|
pntibndlem3.c |
|
| 8 |
|
pntibndlem3.4 |
|
| 9 |
|
pntibndlem3.6 |
|
| 10 |
|
pntibndlem3.5 |
|
| 11 |
|
2re |
|
| 12 |
|
1le2 |
|
| 13 |
|
chpdifbnd |
|
| 14 |
11 12 13
|
mp2an |
|
| 15 |
|
simpr |
|
| 16 |
|
ioossre |
|
| 17 |
16 8
|
sselid |
|
| 18 |
|
eliooord |
|
| 19 |
8 18
|
syl |
|
| 20 |
19
|
simpld |
|
| 21 |
17 20
|
elrpd |
|
| 22 |
21
|
adantr |
|
| 23 |
|
4nn |
|
| 24 |
|
nnrp |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
|
rpdivcl |
|
| 27 |
22 25 26
|
sylancl |
|
| 28 |
15 27
|
rpdivcld |
|
| 29 |
28
|
rpred |
|
| 30 |
29
|
rpefcld |
|
| 31 |
9
|
adantr |
|
| 32 |
30 31
|
rpaddcld |
|
| 33 |
32
|
adantrr |
|
| 34 |
|
breq2 |
|
| 35 |
|
breq1 |
|
| 36 |
34 35
|
anbi12d |
|
| 37 |
|
fveq2 |
|
| 38 |
|
id |
|
| 39 |
37 38
|
oveq12d |
|
| 40 |
39
|
fveq2d |
|
| 41 |
40
|
breq1d |
|
| 42 |
36 41
|
anbi12d |
|
| 43 |
42
|
cbvrexvw |
|
| 44 |
|
breq1 |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
breq2d |
|
| 47 |
44 46
|
anbi12d |
|
| 48 |
47
|
anbi1d |
|
| 49 |
48
|
rexbidv |
|
| 50 |
43 49
|
bitrid |
|
| 51 |
|
oveq1 |
|
| 52 |
51
|
breq2d |
|
| 53 |
52
|
anbi2d |
|
| 54 |
53
|
anbi1d |
|
| 55 |
54
|
rexbidv |
|
| 56 |
55
|
ralbidv |
|
| 57 |
10
|
ad2antrr |
|
| 58 |
5
|
adantr |
|
| 59 |
58
|
rpred |
|
| 60 |
|
remulcl |
|
| 61 |
11 59 60
|
sylancr |
|
| 62 |
|
2rp |
|
| 63 |
|
relogcl |
|
| 64 |
62 63
|
ax-mp |
|
| 65 |
|
readdcl |
|
| 66 |
61 64 65
|
sylancl |
|
| 67 |
7 66
|
eqeltrid |
|
| 68 |
67 22
|
rerpdivcld |
|
| 69 |
68
|
reefcld |
|
| 70 |
|
elicopnf |
|
| 71 |
69 70
|
syl |
|
| 72 |
71
|
simprbda |
|
| 73 |
72
|
rehalfcld |
|
| 74 |
22
|
rphalfcld |
|
| 75 |
59 74
|
rerpdivcld |
|
| 76 |
75
|
reefcld |
|
| 77 |
|
remulcl |
|
| 78 |
76 11 77
|
sylancl |
|
| 79 |
78
|
adantr |
|
| 80 |
69
|
adantr |
|
| 81 |
75
|
recnd |
|
| 82 |
64
|
recni |
|
| 83 |
|
efadd |
|
| 84 |
81 82 83
|
sylancl |
|
| 85 |
|
reeflog |
|
| 86 |
62 85
|
ax-mp |
|
| 87 |
86
|
oveq2i |
|
| 88 |
84 87
|
eqtrdi |
|
| 89 |
64
|
a1i |
|
| 90 |
|
rerpdivcl |
|
| 91 |
64 22 90
|
sylancr |
|
| 92 |
82
|
div1i |
|
| 93 |
19
|
simprd |
|
| 94 |
93
|
adantr |
|
| 95 |
17
|
adantr |
|
| 96 |
|
1re |
|
| 97 |
|
ltle |
|
| 98 |
95 96 97
|
sylancl |
|
| 99 |
94 98
|
mpd |
|
| 100 |
22
|
rpregt0d |
|
| 101 |
|
1rp |
|
| 102 |
|
rpregt0 |
|
| 103 |
101 102
|
mp1i |
|
| 104 |
|
1lt2 |
|
| 105 |
|
rplogcl |
|
| 106 |
11 104 105
|
mp2an |
|
| 107 |
|
rpregt0 |
|
| 108 |
106 107
|
mp1i |
|
| 109 |
|
lediv2 |
|
| 110 |
100 103 108 109
|
syl3anc |
|
| 111 |
99 110
|
mpbid |
|
| 112 |
92 111
|
eqbrtrrid |
|
| 113 |
89 91 75 112
|
leadd2dd |
|
| 114 |
7
|
oveq1i |
|
| 115 |
61
|
recnd |
|
| 116 |
82
|
a1i |
|
| 117 |
|
rpcnne0 |
|
| 118 |
22 117
|
syl |
|
| 119 |
|
divdir |
|
| 120 |
115 116 118 119
|
syl3anc |
|
| 121 |
114 120
|
eqtrid |
|
| 122 |
11
|
recni |
|
| 123 |
59
|
recnd |
|
| 124 |
|
mulcom |
|
| 125 |
122 123 124
|
sylancr |
|
| 126 |
125
|
oveq1d |
|
| 127 |
|
rpcnne0 |
|
| 128 |
62 127
|
mp1i |
|
| 129 |
|
divdiv2 |
|
| 130 |
123 118 128 129
|
syl3anc |
|
| 131 |
126 130
|
eqtr4d |
|
| 132 |
131
|
oveq1d |
|
| 133 |
121 132
|
eqtrd |
|
| 134 |
113 133
|
breqtrrd |
|
| 135 |
|
readdcl |
|
| 136 |
75 64 135
|
sylancl |
|
| 137 |
|
efle |
|
| 138 |
136 68 137
|
syl2anc |
|
| 139 |
134 138
|
mpbid |
|
| 140 |
88 139
|
eqbrtrrd |
|
| 141 |
140
|
adantr |
|
| 142 |
71
|
simplbda |
|
| 143 |
79 80 72 141 142
|
letrd |
|
| 144 |
76
|
adantr |
|
| 145 |
|
rpregt0 |
|
| 146 |
62 145
|
mp1i |
|
| 147 |
|
lemuldiv |
|
| 148 |
144 72 146 147
|
syl3anc |
|
| 149 |
143 148
|
mpbid |
|
| 150 |
6 149
|
eqbrtrid |
|
| 151 |
6 144
|
eqeltrid |
|
| 152 |
|
elicopnf |
|
| 153 |
151 152
|
syl |
|
| 154 |
73 150 153
|
mpbir2and |
|
| 155 |
154
|
adantrr |
|
| 156 |
155
|
adantlrr |
|
| 157 |
56 57 156
|
rspcdva |
|
| 158 |
|
elioore |
|
| 159 |
158
|
ad2antll |
|
| 160 |
31
|
rpred |
|
| 161 |
160
|
adantr |
|
| 162 |
29
|
reefcld |
|
| 163 |
162 160
|
readdcld |
|
| 164 |
163
|
adantr |
|
| 165 |
160 30
|
ltaddrp2d |
|
| 166 |
165
|
adantr |
|
| 167 |
|
eliooord |
|
| 168 |
167
|
simpld |
|
| 169 |
168
|
ad2antll |
|
| 170 |
161 164 159 166 169
|
lttrd |
|
| 171 |
161
|
rexrd |
|
| 172 |
|
elioopnf |
|
| 173 |
171 172
|
syl |
|
| 174 |
159 170 173
|
mpbir2and |
|
| 175 |
174
|
adantlrr |
|
| 176 |
50 157 175
|
rspcdva |
|
| 177 |
2
|
ad2antrr |
|
| 178 |
|
fveq2 |
|
| 179 |
|
id |
|
| 180 |
178 179
|
oveq12d |
|
| 181 |
180
|
fveq2d |
|
| 182 |
181
|
breq1d |
|
| 183 |
182
|
cbvralvw |
|
| 184 |
4 183
|
sylib |
|
| 185 |
184
|
ad2antrr |
|
| 186 |
5
|
ad2antrr |
|
| 187 |
8
|
ad2antrr |
|
| 188 |
9
|
ad2antrr |
|
| 189 |
|
simprrl |
|
| 190 |
|
simplrl |
|
| 191 |
|
simplrr |
|
| 192 |
|
eqid |
|
| 193 |
|
simprll |
|
| 194 |
|
simprlr |
|
| 195 |
|
simprrr |
|
| 196 |
1 177 3 185 186 6 7 187 188 189 190 191 192 193 194 195
|
pntibndlem2 |
|
| 197 |
196
|
anassrs |
|
| 198 |
176 197
|
rexlimddv |
|
| 199 |
198
|
ralrimivva |
|
| 200 |
|
oveq1 |
|
| 201 |
200
|
raleqdv |
|
| 202 |
201
|
ralbidv |
|
| 203 |
202
|
rspcev |
|
| 204 |
33 199 203
|
syl2anc |
|
| 205 |
204
|
rexlimdvaa |
|
| 206 |
14 205
|
mpi |
|