Metamath Proof Explorer


Theorem chpdifbnd

Description: A bound on the difference of nearby psi values. Theorem 10.5.2 of Shapiro, p. 427. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Assertion chpdifbnd A1Ac+x1+∞yxAxψyψx2yx+cxlogx

Proof

Step Hyp Ref Expression
1 selberg2b b+z1+∞ψzlogz+n=1zΛnψznz2logzb
2 simpl A1AA
3 0red A1A0
4 1red A1A1
5 0lt1 0<1
6 5 a1i A1A0<1
7 simpr A1A1A
8 3 4 2 6 7 ltletrd A1A0<A
9 2 8 elrpd A1AA+
10 9 adantr A1Ab+z1+∞ψzlogz+n=1zΛnψznz2logzbA+
11 simplr A1Ab+z1+∞ψzlogz+n=1zΛnψznz2logzb1A
12 simprl A1Ab+z1+∞ψzlogz+n=1zΛnψznz2logzbb+
13 simprr A1Ab+z1+∞ψzlogz+n=1zΛnψznz2logzbz1+∞ψzlogz+n=1zΛnψznz2logzb
14 eqid bA+1+2AlogA=bA+1+2AlogA
15 10 11 12 13 14 chpdifbndlem2 A1Ab+z1+∞ψzlogz+n=1zΛnψznz2logzbc+x1+∞yxAxψyψx2yx+cxlogx
16 15 rexlimdvaa A1Ab+z1+∞ψzlogz+n=1zΛnψznz2logzbc+x1+∞yxAxψyψx2yx+cxlogx
17 1 16 mpi A1Ac+x1+∞yxAxψyψx2yx+cxlogx