Metamath Proof Explorer


Theorem chpdifbndlem2

Description: Lemma for chpdifbnd . (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypotheses chpdifbnd.a φA+
chpdifbnd.1 φ1A
chpdifbnd.b φB+
chpdifbnd.2 φz1+∞ψzlogz+m=1zΛmψzmz2logzB
chpdifbnd.c C=BA+1+2AlogA
Assertion chpdifbndlem2 φc+x1+∞yxAxψyψx2yx+cxlogx

Proof

Step Hyp Ref Expression
1 chpdifbnd.a φA+
2 chpdifbnd.1 φ1A
3 chpdifbnd.b φB+
4 chpdifbnd.2 φz1+∞ψzlogz+m=1zΛmψzmz2logzB
5 chpdifbnd.c C=BA+1+2AlogA
6 1rp 1+
7 rpaddcl A+1+A+1+
8 1 6 7 sylancl φA+1+
9 3 8 rpmulcld φBA+1+
10 9 rpred φBA+1
11 2rp 2+
12 rpmulcl 2+A+2A+
13 11 1 12 sylancr φ2A+
14 13 rpred φ2A
15 1 relogcld φlogA
16 14 15 remulcld φ2AlogA
17 10 16 readdcld φBA+1+2AlogA
18 9 rpgt0d φ0<BA+1
19 13 rprege0d φ2A02A
20 log1 log1=0
21 logleb 1+A+1Alog1logA
22 6 1 21 sylancr φ1Alog1logA
23 2 22 mpbid φlog1logA
24 20 23 eqbrtrrid φ0logA
25 mulge0 2A02AlogA0logA02AlogA
26 19 15 24 25 syl12anc φ02AlogA
27 10 16 18 26 addgtge0d φ0<BA+1+2AlogA
28 17 27 elrpd φBA+1+2AlogA+
29 5 28 eqeltrid φC+
30 1 adantr φx1+∞yxAxA+
31 2 adantr φx1+∞yxAx1A
32 3 adantr φx1+∞yxAxB+
33 4 adantr φx1+∞yxAxz1+∞ψzlogz+m=1zΛmψzmz2logzB
34 simprl φx1+∞yxAxx1+∞
35 simprr φx1+∞yxAxyxAx
36 30 31 32 33 5 34 35 chpdifbndlem1 φx1+∞yxAxψyψx2yx+Cxlogx
37 36 ralrimivva φx1+∞yxAxψyψx2yx+Cxlogx
38 oveq1 c=Ccxlogx=Cxlogx
39 38 oveq2d c=C2yx+cxlogx=2yx+Cxlogx
40 39 breq2d c=Cψyψx2yx+cxlogxψyψx2yx+Cxlogx
41 40 2ralbidv c=Cx1+∞yxAxψyψx2yx+cxlogxx1+∞yxAxψyψx2yx+Cxlogx
42 41 rspcev C+x1+∞yxAxψyψx2yx+Cxlogxc+x1+∞yxAxψyψx2yx+cxlogx
43 29 37 42 syl2anc φc+x1+∞yxAxψyψx2yx+cxlogx