Description: Lemma for chpdifbnd . (Contributed by Mario Carneiro, 25-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chpdifbnd.a | |
|
chpdifbnd.1 | |
||
chpdifbnd.b | |
||
chpdifbnd.2 | |
||
chpdifbnd.c | |
||
Assertion | chpdifbndlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpdifbnd.a | |
|
2 | chpdifbnd.1 | |
|
3 | chpdifbnd.b | |
|
4 | chpdifbnd.2 | |
|
5 | chpdifbnd.c | |
|
6 | 1rp | |
|
7 | rpaddcl | |
|
8 | 1 6 7 | sylancl | |
9 | 3 8 | rpmulcld | |
10 | 9 | rpred | |
11 | 2rp | |
|
12 | rpmulcl | |
|
13 | 11 1 12 | sylancr | |
14 | 13 | rpred | |
15 | 1 | relogcld | |
16 | 14 15 | remulcld | |
17 | 10 16 | readdcld | |
18 | 9 | rpgt0d | |
19 | 13 | rprege0d | |
20 | log1 | |
|
21 | logleb | |
|
22 | 6 1 21 | sylancr | |
23 | 2 22 | mpbid | |
24 | 20 23 | eqbrtrrid | |
25 | mulge0 | |
|
26 | 19 15 24 25 | syl12anc | |
27 | 10 16 18 26 | addgtge0d | |
28 | 17 27 | elrpd | |
29 | 5 28 | eqeltrid | |
30 | 1 | adantr | |
31 | 2 | adantr | |
32 | 3 | adantr | |
33 | 4 | adantr | |
34 | simprl | |
|
35 | simprr | |
|
36 | 30 31 32 33 5 34 35 | chpdifbndlem1 | |
37 | 36 | ralrimivva | |
38 | oveq1 | |
|
39 | 38 | oveq2d | |
40 | 39 | breq2d | |
41 | 40 | 2ralbidv | |
42 | 41 | rspcev | |
43 | 29 37 42 | syl2anc | |