| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdifbnd.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | chpdifbnd.1 |  |-  ( ph -> 1 <_ A ) | 
						
							| 3 |  | chpdifbnd.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | chpdifbnd.2 |  |-  ( ph -> A. z e. ( 1 [,) +oo ) ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) <_ B ) | 
						
							| 5 |  | chpdifbnd.c |  |-  C = ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) | 
						
							| 6 |  | 1rp |  |-  1 e. RR+ | 
						
							| 7 |  | rpaddcl |  |-  ( ( A e. RR+ /\ 1 e. RR+ ) -> ( A + 1 ) e. RR+ ) | 
						
							| 8 | 1 6 7 | sylancl |  |-  ( ph -> ( A + 1 ) e. RR+ ) | 
						
							| 9 | 3 8 | rpmulcld |  |-  ( ph -> ( B x. ( A + 1 ) ) e. RR+ ) | 
						
							| 10 | 9 | rpred |  |-  ( ph -> ( B x. ( A + 1 ) ) e. RR ) | 
						
							| 11 |  | 2rp |  |-  2 e. RR+ | 
						
							| 12 |  | rpmulcl |  |-  ( ( 2 e. RR+ /\ A e. RR+ ) -> ( 2 x. A ) e. RR+ ) | 
						
							| 13 | 11 1 12 | sylancr |  |-  ( ph -> ( 2 x. A ) e. RR+ ) | 
						
							| 14 | 13 | rpred |  |-  ( ph -> ( 2 x. A ) e. RR ) | 
						
							| 15 | 1 | relogcld |  |-  ( ph -> ( log ` A ) e. RR ) | 
						
							| 16 | 14 15 | remulcld |  |-  ( ph -> ( ( 2 x. A ) x. ( log ` A ) ) e. RR ) | 
						
							| 17 | 10 16 | readdcld |  |-  ( ph -> ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) e. RR ) | 
						
							| 18 | 9 | rpgt0d |  |-  ( ph -> 0 < ( B x. ( A + 1 ) ) ) | 
						
							| 19 | 13 | rprege0d |  |-  ( ph -> ( ( 2 x. A ) e. RR /\ 0 <_ ( 2 x. A ) ) ) | 
						
							| 20 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 21 |  | logleb |  |-  ( ( 1 e. RR+ /\ A e. RR+ ) -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) | 
						
							| 22 | 6 1 21 | sylancr |  |-  ( ph -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) | 
						
							| 23 | 2 22 | mpbid |  |-  ( ph -> ( log ` 1 ) <_ ( log ` A ) ) | 
						
							| 24 | 20 23 | eqbrtrrid |  |-  ( ph -> 0 <_ ( log ` A ) ) | 
						
							| 25 |  | mulge0 |  |-  ( ( ( ( 2 x. A ) e. RR /\ 0 <_ ( 2 x. A ) ) /\ ( ( log ` A ) e. RR /\ 0 <_ ( log ` A ) ) ) -> 0 <_ ( ( 2 x. A ) x. ( log ` A ) ) ) | 
						
							| 26 | 19 15 24 25 | syl12anc |  |-  ( ph -> 0 <_ ( ( 2 x. A ) x. ( log ` A ) ) ) | 
						
							| 27 | 10 16 18 26 | addgtge0d |  |-  ( ph -> 0 < ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) ) | 
						
							| 28 | 17 27 | elrpd |  |-  ( ph -> ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) e. RR+ ) | 
						
							| 29 | 5 28 | eqeltrid |  |-  ( ph -> C e. RR+ ) | 
						
							| 30 | 1 | adantr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> A e. RR+ ) | 
						
							| 31 | 2 | adantr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> 1 <_ A ) | 
						
							| 32 | 3 | adantr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> B e. RR+ ) | 
						
							| 33 | 4 | adantr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> A. z e. ( 1 [,) +oo ) ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) <_ B ) | 
						
							| 34 |  | simprl |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> x e. ( 1 (,) +oo ) ) | 
						
							| 35 |  | simprr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> y e. ( x [,] ( A x. x ) ) ) | 
						
							| 36 | 30 31 32 33 5 34 35 | chpdifbndlem1 |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ y e. ( x [,] ( A x. x ) ) ) ) -> ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( C x. ( x / ( log ` x ) ) ) ) ) | 
						
							| 37 | 36 | ralrimivva |  |-  ( ph -> A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( A x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( C x. ( x / ( log ` x ) ) ) ) ) | 
						
							| 38 |  | oveq1 |  |-  ( c = C -> ( c x. ( x / ( log ` x ) ) ) = ( C x. ( x / ( log ` x ) ) ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( c = C -> ( ( 2 x. ( y - x ) ) + ( c x. ( x / ( log ` x ) ) ) ) = ( ( 2 x. ( y - x ) ) + ( C x. ( x / ( log ` x ) ) ) ) ) | 
						
							| 40 | 39 | breq2d |  |-  ( c = C -> ( ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( c x. ( x / ( log ` x ) ) ) ) <-> ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( C x. ( x / ( log ` x ) ) ) ) ) ) | 
						
							| 41 | 40 | 2ralbidv |  |-  ( c = C -> ( A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( A x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( c x. ( x / ( log ` x ) ) ) ) <-> A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( A x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( C x. ( x / ( log ` x ) ) ) ) ) ) | 
						
							| 42 | 41 | rspcev |  |-  ( ( C e. RR+ /\ A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( A x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( C x. ( x / ( log ` x ) ) ) ) ) -> E. c e. RR+ A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( A x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( c x. ( x / ( log ` x ) ) ) ) ) | 
						
							| 43 | 29 37 42 | syl2anc |  |-  ( ph -> E. c e. RR+ A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( A x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( c x. ( x / ( log ` x ) ) ) ) ) |