| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdifbnd.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | chpdifbnd.1 |  |-  ( ph -> 1 <_ A ) | 
						
							| 3 |  | chpdifbnd.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | chpdifbnd.2 |  |-  ( ph -> A. z e. ( 1 [,) +oo ) ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) <_ B ) | 
						
							| 5 |  | chpdifbnd.c |  |-  C = ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) | 
						
							| 6 |  | chpdifbnd.x |  |-  ( ph -> X e. ( 1 (,) +oo ) ) | 
						
							| 7 |  | chpdifbnd.y |  |-  ( ph -> Y e. ( X [,] ( A x. X ) ) ) | 
						
							| 8 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 9 | 8 6 | sselid |  |-  ( ph -> X e. RR ) | 
						
							| 10 | 1 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 11 | 10 9 | remulcld |  |-  ( ph -> ( A x. X ) e. RR ) | 
						
							| 12 |  | elicc2 |  |-  ( ( X e. RR /\ ( A x. X ) e. RR ) -> ( Y e. ( X [,] ( A x. X ) ) <-> ( Y e. RR /\ X <_ Y /\ Y <_ ( A x. X ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc |  |-  ( ph -> ( Y e. ( X [,] ( A x. X ) ) <-> ( Y e. RR /\ X <_ Y /\ Y <_ ( A x. X ) ) ) ) | 
						
							| 14 | 7 13 | mpbid |  |-  ( ph -> ( Y e. RR /\ X <_ Y /\ Y <_ ( A x. X ) ) ) | 
						
							| 15 | 14 | simp1d |  |-  ( ph -> Y e. RR ) | 
						
							| 16 |  | chpcl |  |-  ( Y e. RR -> ( psi ` Y ) e. RR ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( psi ` Y ) e. RR ) | 
						
							| 18 |  | chpcl |  |-  ( X e. RR -> ( psi ` X ) e. RR ) | 
						
							| 19 | 9 18 | syl |  |-  ( ph -> ( psi ` X ) e. RR ) | 
						
							| 20 | 17 19 | resubcld |  |-  ( ph -> ( ( psi ` Y ) - ( psi ` X ) ) e. RR ) | 
						
							| 21 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 22 |  | 1re |  |-  1 e. RR | 
						
							| 23 | 22 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 24 |  | 0lt1 |  |-  0 < 1 | 
						
							| 25 | 24 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 26 |  | eliooord |  |-  ( X e. ( 1 (,) +oo ) -> ( 1 < X /\ X < +oo ) ) | 
						
							| 27 | 6 26 | syl |  |-  ( ph -> ( 1 < X /\ X < +oo ) ) | 
						
							| 28 | 27 | simpld |  |-  ( ph -> 1 < X ) | 
						
							| 29 | 21 23 9 25 28 | lttrd |  |-  ( ph -> 0 < X ) | 
						
							| 30 | 9 29 | elrpd |  |-  ( ph -> X e. RR+ ) | 
						
							| 31 | 30 | relogcld |  |-  ( ph -> ( log ` X ) e. RR ) | 
						
							| 32 | 20 31 | remulcld |  |-  ( ph -> ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) e. RR ) | 
						
							| 33 |  | 2re |  |-  2 e. RR | 
						
							| 34 | 15 9 | resubcld |  |-  ( ph -> ( Y - X ) e. RR ) | 
						
							| 35 |  | remulcl |  |-  ( ( 2 e. RR /\ ( Y - X ) e. RR ) -> ( 2 x. ( Y - X ) ) e. RR ) | 
						
							| 36 | 33 34 35 | sylancr |  |-  ( ph -> ( 2 x. ( Y - X ) ) e. RR ) | 
						
							| 37 | 36 31 | remulcld |  |-  ( ph -> ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) e. RR ) | 
						
							| 38 | 3 | rpred |  |-  ( ph -> B e. RR ) | 
						
							| 39 | 15 9 | readdcld |  |-  ( ph -> ( Y + X ) e. RR ) | 
						
							| 40 | 38 39 | remulcld |  |-  ( ph -> ( B x. ( Y + X ) ) e. RR ) | 
						
							| 41 | 1 | relogcld |  |-  ( ph -> ( log ` A ) e. RR ) | 
						
							| 42 |  | remulcl |  |-  ( ( 2 e. RR /\ ( log ` A ) e. RR ) -> ( 2 x. ( log ` A ) ) e. RR ) | 
						
							| 43 | 33 41 42 | sylancr |  |-  ( ph -> ( 2 x. ( log ` A ) ) e. RR ) | 
						
							| 44 | 43 15 | remulcld |  |-  ( ph -> ( ( 2 x. ( log ` A ) ) x. Y ) e. RR ) | 
						
							| 45 | 40 44 | readdcld |  |-  ( ph -> ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) e. RR ) | 
						
							| 46 | 37 45 | readdcld |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) e. RR ) | 
						
							| 47 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 48 | 10 47 | syl |  |-  ( ph -> ( A + 1 ) e. RR ) | 
						
							| 49 | 38 48 | remulcld |  |-  ( ph -> ( B x. ( A + 1 ) ) e. RR ) | 
						
							| 50 |  | remulcl |  |-  ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) | 
						
							| 51 | 33 10 50 | sylancr |  |-  ( ph -> ( 2 x. A ) e. RR ) | 
						
							| 52 | 51 41 | remulcld |  |-  ( ph -> ( ( 2 x. A ) x. ( log ` A ) ) e. RR ) | 
						
							| 53 | 49 52 | readdcld |  |-  ( ph -> ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) e. RR ) | 
						
							| 54 | 5 53 | eqeltrid |  |-  ( ph -> C e. RR ) | 
						
							| 55 | 54 9 | remulcld |  |-  ( ph -> ( C x. X ) e. RR ) | 
						
							| 56 | 37 55 | readdcld |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( C x. X ) ) e. RR ) | 
						
							| 57 | 17 31 | remulcld |  |-  ( ph -> ( ( psi ` Y ) x. ( log ` X ) ) e. RR ) | 
						
							| 58 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` X ) ) e. Fin ) | 
						
							| 59 | 14 | simp2d |  |-  ( ph -> X <_ Y ) | 
						
							| 60 |  | flword2 |  |-  ( ( X e. RR /\ Y e. RR /\ X <_ Y ) -> ( |_ ` Y ) e. ( ZZ>= ` ( |_ ` X ) ) ) | 
						
							| 61 | 9 15 59 60 | syl3anc |  |-  ( ph -> ( |_ ` Y ) e. ( ZZ>= ` ( |_ ` X ) ) ) | 
						
							| 62 |  | fzss2 |  |-  ( ( |_ ` Y ) e. ( ZZ>= ` ( |_ ` X ) ) -> ( 1 ... ( |_ ` X ) ) C_ ( 1 ... ( |_ ` Y ) ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ph -> ( 1 ... ( |_ ` X ) ) C_ ( 1 ... ( |_ ` Y ) ) ) | 
						
							| 64 | 63 | sselda |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` X ) ) ) -> n e. ( 1 ... ( |_ ` Y ) ) ) | 
						
							| 65 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` Y ) ) -> n e. NN ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> n e. NN ) | 
						
							| 67 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 69 |  | nndivre |  |-  ( ( X e. RR /\ n e. NN ) -> ( X / n ) e. RR ) | 
						
							| 70 | 9 65 69 | syl2an |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( X / n ) e. RR ) | 
						
							| 71 |  | chpcl |  |-  ( ( X / n ) e. RR -> ( psi ` ( X / n ) ) e. RR ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( psi ` ( X / n ) ) e. RR ) | 
						
							| 73 | 68 72 | remulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) e. RR ) | 
						
							| 74 | 64 73 | syldan |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` X ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) e. RR ) | 
						
							| 75 | 58 74 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) e. RR ) | 
						
							| 76 | 57 75 | readdcld |  |-  ( ph -> ( ( ( psi ` Y ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) e. RR ) | 
						
							| 77 |  | remulcl |  |-  ( ( 2 e. RR /\ ( log ` X ) e. RR ) -> ( 2 x. ( log ` X ) ) e. RR ) | 
						
							| 78 | 33 31 77 | sylancr |  |-  ( ph -> ( 2 x. ( log ` X ) ) e. RR ) | 
						
							| 79 | 78 38 | resubcld |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) - B ) e. RR ) | 
						
							| 80 | 79 9 | remulcld |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) e. RR ) | 
						
							| 81 | 1 30 | rpmulcld |  |-  ( ph -> ( A x. X ) e. RR+ ) | 
						
							| 82 | 81 | relogcld |  |-  ( ph -> ( log ` ( A x. X ) ) e. RR ) | 
						
							| 83 |  | remulcl |  |-  ( ( 2 e. RR /\ ( log ` ( A x. X ) ) e. RR ) -> ( 2 x. ( log ` ( A x. X ) ) ) e. RR ) | 
						
							| 84 | 33 82 83 | sylancr |  |-  ( ph -> ( 2 x. ( log ` ( A x. X ) ) ) e. RR ) | 
						
							| 85 | 38 84 | readdcld |  |-  ( ph -> ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) e. RR ) | 
						
							| 86 | 85 15 | remulcld |  |-  ( ph -> ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) e. RR ) | 
						
							| 87 | 19 31 | remulcld |  |-  ( ph -> ( ( psi ` X ) x. ( log ` X ) ) e. RR ) | 
						
							| 88 | 87 75 | readdcld |  |-  ( ph -> ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) e. RR ) | 
						
							| 89 | 21 9 15 29 59 | ltletrd |  |-  ( ph -> 0 < Y ) | 
						
							| 90 | 15 89 | elrpd |  |-  ( ph -> Y e. RR+ ) | 
						
							| 91 | 90 | relogcld |  |-  ( ph -> ( log ` Y ) e. RR ) | 
						
							| 92 | 17 91 | remulcld |  |-  ( ph -> ( ( psi ` Y ) x. ( log ` Y ) ) e. RR ) | 
						
							| 93 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` Y ) ) e. Fin ) | 
						
							| 94 |  | nndivre |  |-  ( ( Y e. RR /\ n e. NN ) -> ( Y / n ) e. RR ) | 
						
							| 95 | 15 65 94 | syl2an |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( Y / n ) e. RR ) | 
						
							| 96 |  | chpcl |  |-  ( ( Y / n ) e. RR -> ( psi ` ( Y / n ) ) e. RR ) | 
						
							| 97 | 95 96 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( psi ` ( Y / n ) ) e. RR ) | 
						
							| 98 | 68 97 | remulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) e. RR ) | 
						
							| 99 | 93 98 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) e. RR ) | 
						
							| 100 | 92 99 | readdcld |  |-  ( ph -> ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) e. RR ) | 
						
							| 101 |  | chpge0 |  |-  ( Y e. RR -> 0 <_ ( psi ` Y ) ) | 
						
							| 102 | 15 101 | syl |  |-  ( ph -> 0 <_ ( psi ` Y ) ) | 
						
							| 103 | 30 90 | logled |  |-  ( ph -> ( X <_ Y <-> ( log ` X ) <_ ( log ` Y ) ) ) | 
						
							| 104 | 59 103 | mpbid |  |-  ( ph -> ( log ` X ) <_ ( log ` Y ) ) | 
						
							| 105 | 31 91 17 102 104 | lemul2ad |  |-  ( ph -> ( ( psi ` Y ) x. ( log ` X ) ) <_ ( ( psi ` Y ) x. ( log ` Y ) ) ) | 
						
							| 106 | 93 73 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) e. RR ) | 
						
							| 107 |  | vmage0 |  |-  ( n e. NN -> 0 <_ ( Lam ` n ) ) | 
						
							| 108 | 66 107 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> 0 <_ ( Lam ` n ) ) | 
						
							| 109 |  | chpge0 |  |-  ( ( X / n ) e. RR -> 0 <_ ( psi ` ( X / n ) ) ) | 
						
							| 110 | 70 109 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> 0 <_ ( psi ` ( X / n ) ) ) | 
						
							| 111 | 68 72 108 110 | mulge0d |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> 0 <_ ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) | 
						
							| 112 | 93 73 111 63 | fsumless |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) | 
						
							| 113 | 9 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> X e. RR ) | 
						
							| 114 | 15 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> Y e. RR ) | 
						
							| 115 | 66 | nnrpd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> n e. RR+ ) | 
						
							| 116 | 59 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> X <_ Y ) | 
						
							| 117 | 113 114 115 116 | lediv1dd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( X / n ) <_ ( Y / n ) ) | 
						
							| 118 |  | chpwordi |  |-  ( ( ( X / n ) e. RR /\ ( Y / n ) e. RR /\ ( X / n ) <_ ( Y / n ) ) -> ( psi ` ( X / n ) ) <_ ( psi ` ( Y / n ) ) ) | 
						
							| 119 | 70 95 117 118 | syl3anc |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( psi ` ( X / n ) ) <_ ( psi ` ( Y / n ) ) ) | 
						
							| 120 | 72 97 68 108 119 | lemul2ad |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) <_ ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) | 
						
							| 121 | 93 73 98 120 | fsumle |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) | 
						
							| 122 | 75 106 99 112 121 | letrd |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) | 
						
							| 123 | 57 75 92 99 105 122 | le2addd |  |-  ( ph -> ( ( ( psi ` Y ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) <_ ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) ) | 
						
							| 124 | 100 90 | rerpdivcld |  |-  ( ph -> ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) e. RR ) | 
						
							| 125 |  | remulcl |  |-  ( ( 2 e. RR /\ ( log ` Y ) e. RR ) -> ( 2 x. ( log ` Y ) ) e. RR ) | 
						
							| 126 | 33 91 125 | sylancr |  |-  ( ph -> ( 2 x. ( log ` Y ) ) e. RR ) | 
						
							| 127 | 38 126 | readdcld |  |-  ( ph -> ( B + ( 2 x. ( log ` Y ) ) ) e. RR ) | 
						
							| 128 | 124 126 | resubcld |  |-  ( ph -> ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) e. RR ) | 
						
							| 129 | 128 | recnd |  |-  ( ph -> ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) e. CC ) | 
						
							| 130 | 129 | abscld |  |-  ( ph -> ( abs ` ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) ) e. RR ) | 
						
							| 131 | 128 | leabsd |  |-  ( ph -> ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) <_ ( abs ` ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) ) ) | 
						
							| 132 |  | fveq2 |  |-  ( z = Y -> ( psi ` z ) = ( psi ` Y ) ) | 
						
							| 133 |  | fveq2 |  |-  ( z = Y -> ( log ` z ) = ( log ` Y ) ) | 
						
							| 134 | 132 133 | oveq12d |  |-  ( z = Y -> ( ( psi ` z ) x. ( log ` z ) ) = ( ( psi ` Y ) x. ( log ` Y ) ) ) | 
						
							| 135 |  | fveq2 |  |-  ( m = n -> ( Lam ` m ) = ( Lam ` n ) ) | 
						
							| 136 |  | oveq2 |  |-  ( m = n -> ( z / m ) = ( z / n ) ) | 
						
							| 137 | 136 | fveq2d |  |-  ( m = n -> ( psi ` ( z / m ) ) = ( psi ` ( z / n ) ) ) | 
						
							| 138 | 135 137 | oveq12d |  |-  ( m = n -> ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) = ( ( Lam ` n ) x. ( psi ` ( z / n ) ) ) ) | 
						
							| 139 | 138 | cbvsumv |  |-  sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) = sum_ n e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` n ) x. ( psi ` ( z / n ) ) ) | 
						
							| 140 |  | fveq2 |  |-  ( z = Y -> ( |_ ` z ) = ( |_ ` Y ) ) | 
						
							| 141 | 140 | oveq2d |  |-  ( z = Y -> ( 1 ... ( |_ ` z ) ) = ( 1 ... ( |_ ` Y ) ) ) | 
						
							| 142 |  | simpl |  |-  ( ( z = Y /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> z = Y ) | 
						
							| 143 | 142 | fvoveq1d |  |-  ( ( z = Y /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( psi ` ( z / n ) ) = ( psi ` ( Y / n ) ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( ( z = Y /\ n e. ( 1 ... ( |_ ` Y ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( z / n ) ) ) = ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) | 
						
							| 145 | 141 144 | sumeq12rdv |  |-  ( z = Y -> sum_ n e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` n ) x. ( psi ` ( z / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) | 
						
							| 146 | 139 145 | eqtrid |  |-  ( z = Y -> sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) = sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) | 
						
							| 147 | 134 146 | oveq12d |  |-  ( z = Y -> ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) = ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) ) | 
						
							| 148 |  | id |  |-  ( z = Y -> z = Y ) | 
						
							| 149 | 147 148 | oveq12d |  |-  ( z = Y -> ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) = ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) ) | 
						
							| 150 | 133 | oveq2d |  |-  ( z = Y -> ( 2 x. ( log ` z ) ) = ( 2 x. ( log ` Y ) ) ) | 
						
							| 151 | 149 150 | oveq12d |  |-  ( z = Y -> ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) = ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) ) | 
						
							| 152 | 151 | fveq2d |  |-  ( z = Y -> ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) = ( abs ` ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) ) ) | 
						
							| 153 | 152 | breq1d |  |-  ( z = Y -> ( ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) <_ B <-> ( abs ` ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) ) <_ B ) ) | 
						
							| 154 | 23 9 28 | ltled |  |-  ( ph -> 1 <_ X ) | 
						
							| 155 | 23 9 15 154 59 | letrd |  |-  ( ph -> 1 <_ Y ) | 
						
							| 156 |  | elicopnf |  |-  ( 1 e. RR -> ( Y e. ( 1 [,) +oo ) <-> ( Y e. RR /\ 1 <_ Y ) ) ) | 
						
							| 157 | 22 156 | ax-mp |  |-  ( Y e. ( 1 [,) +oo ) <-> ( Y e. RR /\ 1 <_ Y ) ) | 
						
							| 158 | 15 155 157 | sylanbrc |  |-  ( ph -> Y e. ( 1 [,) +oo ) ) | 
						
							| 159 | 153 4 158 | rspcdva |  |-  ( ph -> ( abs ` ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) ) <_ B ) | 
						
							| 160 | 128 130 38 131 159 | letrd |  |-  ( ph -> ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) <_ B ) | 
						
							| 161 | 124 126 38 | lesubaddd |  |-  ( ph -> ( ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) - ( 2 x. ( log ` Y ) ) ) <_ B <-> ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) <_ ( B + ( 2 x. ( log ` Y ) ) ) ) ) | 
						
							| 162 | 160 161 | mpbid |  |-  ( ph -> ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) <_ ( B + ( 2 x. ( log ` Y ) ) ) ) | 
						
							| 163 | 14 | simp3d |  |-  ( ph -> Y <_ ( A x. X ) ) | 
						
							| 164 | 90 81 | logled |  |-  ( ph -> ( Y <_ ( A x. X ) <-> ( log ` Y ) <_ ( log ` ( A x. X ) ) ) ) | 
						
							| 165 | 163 164 | mpbid |  |-  ( ph -> ( log ` Y ) <_ ( log ` ( A x. X ) ) ) | 
						
							| 166 |  | 2pos |  |-  0 < 2 | 
						
							| 167 | 33 166 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 168 | 167 | a1i |  |-  ( ph -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 169 |  | lemul2 |  |-  ( ( ( log ` Y ) e. RR /\ ( log ` ( A x. X ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( log ` Y ) <_ ( log ` ( A x. X ) ) <-> ( 2 x. ( log ` Y ) ) <_ ( 2 x. ( log ` ( A x. X ) ) ) ) ) | 
						
							| 170 | 91 82 168 169 | syl3anc |  |-  ( ph -> ( ( log ` Y ) <_ ( log ` ( A x. X ) ) <-> ( 2 x. ( log ` Y ) ) <_ ( 2 x. ( log ` ( A x. X ) ) ) ) ) | 
						
							| 171 | 165 170 | mpbid |  |-  ( ph -> ( 2 x. ( log ` Y ) ) <_ ( 2 x. ( log ` ( A x. X ) ) ) ) | 
						
							| 172 | 126 84 38 171 | leadd2dd |  |-  ( ph -> ( B + ( 2 x. ( log ` Y ) ) ) <_ ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) ) | 
						
							| 173 | 124 127 85 162 172 | letrd |  |-  ( ph -> ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) <_ ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) ) | 
						
							| 174 | 100 85 90 | ledivmul2d |  |-  ( ph -> ( ( ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) / Y ) <_ ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) <-> ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) <_ ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) ) ) | 
						
							| 175 | 173 174 | mpbid |  |-  ( ph -> ( ( ( psi ` Y ) x. ( log ` Y ) ) + sum_ n e. ( 1 ... ( |_ ` Y ) ) ( ( Lam ` n ) x. ( psi ` ( Y / n ) ) ) ) <_ ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) ) | 
						
							| 176 | 76 100 86 123 175 | letrd |  |-  ( ph -> ( ( ( psi ` Y ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) <_ ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) ) | 
						
							| 177 |  | fveq2 |  |-  ( z = X -> ( psi ` z ) = ( psi ` X ) ) | 
						
							| 178 |  | fveq2 |  |-  ( z = X -> ( log ` z ) = ( log ` X ) ) | 
						
							| 179 | 177 178 | oveq12d |  |-  ( z = X -> ( ( psi ` z ) x. ( log ` z ) ) = ( ( psi ` X ) x. ( log ` X ) ) ) | 
						
							| 180 |  | fveq2 |  |-  ( z = X -> ( |_ ` z ) = ( |_ ` X ) ) | 
						
							| 181 | 180 | oveq2d |  |-  ( z = X -> ( 1 ... ( |_ ` z ) ) = ( 1 ... ( |_ ` X ) ) ) | 
						
							| 182 |  | simpl |  |-  ( ( z = X /\ n e. ( 1 ... ( |_ ` X ) ) ) -> z = X ) | 
						
							| 183 | 182 | fvoveq1d |  |-  ( ( z = X /\ n e. ( 1 ... ( |_ ` X ) ) ) -> ( psi ` ( z / n ) ) = ( psi ` ( X / n ) ) ) | 
						
							| 184 | 183 | oveq2d |  |-  ( ( z = X /\ n e. ( 1 ... ( |_ ` X ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( z / n ) ) ) = ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) | 
						
							| 185 | 181 184 | sumeq12rdv |  |-  ( z = X -> sum_ n e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` n ) x. ( psi ` ( z / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) | 
						
							| 186 | 139 185 | eqtrid |  |-  ( z = X -> sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) = sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) | 
						
							| 187 | 179 186 | oveq12d |  |-  ( z = X -> ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) = ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) ) | 
						
							| 188 |  | id |  |-  ( z = X -> z = X ) | 
						
							| 189 | 187 188 | oveq12d |  |-  ( z = X -> ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) = ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) ) | 
						
							| 190 | 178 | oveq2d |  |-  ( z = X -> ( 2 x. ( log ` z ) ) = ( 2 x. ( log ` X ) ) ) | 
						
							| 191 | 189 190 | oveq12d |  |-  ( z = X -> ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) = ( ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) - ( 2 x. ( log ` X ) ) ) ) | 
						
							| 192 | 191 | fveq2d |  |-  ( z = X -> ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) = ( abs ` ( ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) - ( 2 x. ( log ` X ) ) ) ) ) | 
						
							| 193 | 192 | breq1d |  |-  ( z = X -> ( ( abs ` ( ( ( ( ( psi ` z ) x. ( log ` z ) ) + sum_ m e. ( 1 ... ( |_ ` z ) ) ( ( Lam ` m ) x. ( psi ` ( z / m ) ) ) ) / z ) - ( 2 x. ( log ` z ) ) ) ) <_ B <-> ( abs ` ( ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) - ( 2 x. ( log ` X ) ) ) ) <_ B ) ) | 
						
							| 194 |  | elicopnf |  |-  ( 1 e. RR -> ( X e. ( 1 [,) +oo ) <-> ( X e. RR /\ 1 <_ X ) ) ) | 
						
							| 195 | 22 194 | ax-mp |  |-  ( X e. ( 1 [,) +oo ) <-> ( X e. RR /\ 1 <_ X ) ) | 
						
							| 196 | 9 154 195 | sylanbrc |  |-  ( ph -> X e. ( 1 [,) +oo ) ) | 
						
							| 197 | 193 4 196 | rspcdva |  |-  ( ph -> ( abs ` ( ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) - ( 2 x. ( log ` X ) ) ) ) <_ B ) | 
						
							| 198 | 88 30 | rerpdivcld |  |-  ( ph -> ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) e. RR ) | 
						
							| 199 | 198 78 38 | absdifled |  |-  ( ph -> ( ( abs ` ( ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) - ( 2 x. ( log ` X ) ) ) ) <_ B <-> ( ( ( 2 x. ( log ` X ) ) - B ) <_ ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) /\ ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) <_ ( ( 2 x. ( log ` X ) ) + B ) ) ) ) | 
						
							| 200 | 197 199 | mpbid |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) - B ) <_ ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) /\ ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) <_ ( ( 2 x. ( log ` X ) ) + B ) ) ) | 
						
							| 201 | 200 | simpld |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) - B ) <_ ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) ) | 
						
							| 202 | 79 88 30 | lemuldivd |  |-  ( ph -> ( ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) <_ ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) <-> ( ( 2 x. ( log ` X ) ) - B ) <_ ( ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) / X ) ) ) | 
						
							| 203 | 201 202 | mpbird |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) <_ ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) ) | 
						
							| 204 | 76 80 86 88 176 203 | le2subd |  |-  ( ph -> ( ( ( ( psi ` Y ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) - ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) ) <_ ( ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) - ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) ) ) | 
						
							| 205 | 57 | recnd |  |-  ( ph -> ( ( psi ` Y ) x. ( log ` X ) ) e. CC ) | 
						
							| 206 | 87 | recnd |  |-  ( ph -> ( ( psi ` X ) x. ( log ` X ) ) e. CC ) | 
						
							| 207 | 75 | recnd |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) e. CC ) | 
						
							| 208 | 205 206 207 | pnpcan2d |  |-  ( ph -> ( ( ( ( psi ` Y ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) - ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) ) = ( ( ( psi ` Y ) x. ( log ` X ) ) - ( ( psi ` X ) x. ( log ` X ) ) ) ) | 
						
							| 209 | 17 | recnd |  |-  ( ph -> ( psi ` Y ) e. CC ) | 
						
							| 210 | 19 | recnd |  |-  ( ph -> ( psi ` X ) e. CC ) | 
						
							| 211 | 31 | recnd |  |-  ( ph -> ( log ` X ) e. CC ) | 
						
							| 212 | 209 210 211 | subdird |  |-  ( ph -> ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) = ( ( ( psi ` Y ) x. ( log ` X ) ) - ( ( psi ` X ) x. ( log ` X ) ) ) ) | 
						
							| 213 | 208 212 | eqtr4d |  |-  ( ph -> ( ( ( ( psi ` Y ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) - ( ( ( psi ` X ) x. ( log ` X ) ) + sum_ n e. ( 1 ... ( |_ ` X ) ) ( ( Lam ` n ) x. ( psi ` ( X / n ) ) ) ) ) = ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) ) | 
						
							| 214 | 78 15 | remulcld |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) x. Y ) e. RR ) | 
						
							| 215 | 214 | recnd |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) x. Y ) e. CC ) | 
						
							| 216 | 38 43 | readdcld |  |-  ( ph -> ( B + ( 2 x. ( log ` A ) ) ) e. RR ) | 
						
							| 217 | 216 15 | remulcld |  |-  ( ph -> ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) e. RR ) | 
						
							| 218 | 217 | recnd |  |-  ( ph -> ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) e. CC ) | 
						
							| 219 | 78 9 | remulcld |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) x. X ) e. RR ) | 
						
							| 220 | 219 | recnd |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) x. X ) e. CC ) | 
						
							| 221 | 38 9 | remulcld |  |-  ( ph -> ( B x. X ) e. RR ) | 
						
							| 222 | 221 | recnd |  |-  ( ph -> ( B x. X ) e. CC ) | 
						
							| 223 | 222 | negcld |  |-  ( ph -> -u ( B x. X ) e. CC ) | 
						
							| 224 | 215 218 220 223 | addsub4d |  |-  ( ph -> ( ( ( ( 2 x. ( log ` X ) ) x. Y ) + ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) ) - ( ( ( 2 x. ( log ` X ) ) x. X ) + -u ( B x. X ) ) ) = ( ( ( ( 2 x. ( log ` X ) ) x. Y ) - ( ( 2 x. ( log ` X ) ) x. X ) ) + ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) - -u ( B x. X ) ) ) ) | 
						
							| 225 | 41 | recnd |  |-  ( ph -> ( log ` A ) e. CC ) | 
						
							| 226 | 1 30 | relogmuld |  |-  ( ph -> ( log ` ( A x. X ) ) = ( ( log ` A ) + ( log ` X ) ) ) | 
						
							| 227 | 225 211 226 | comraddd |  |-  ( ph -> ( log ` ( A x. X ) ) = ( ( log ` X ) + ( log ` A ) ) ) | 
						
							| 228 | 227 | oveq2d |  |-  ( ph -> ( 2 x. ( log ` ( A x. X ) ) ) = ( 2 x. ( ( log ` X ) + ( log ` A ) ) ) ) | 
						
							| 229 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 230 | 229 211 225 | adddid |  |-  ( ph -> ( 2 x. ( ( log ` X ) + ( log ` A ) ) ) = ( ( 2 x. ( log ` X ) ) + ( 2 x. ( log ` A ) ) ) ) | 
						
							| 231 | 228 230 | eqtrd |  |-  ( ph -> ( 2 x. ( log ` ( A x. X ) ) ) = ( ( 2 x. ( log ` X ) ) + ( 2 x. ( log ` A ) ) ) ) | 
						
							| 232 | 231 | oveq2d |  |-  ( ph -> ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) = ( B + ( ( 2 x. ( log ` X ) ) + ( 2 x. ( log ` A ) ) ) ) ) | 
						
							| 233 | 38 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 234 | 78 | recnd |  |-  ( ph -> ( 2 x. ( log ` X ) ) e. CC ) | 
						
							| 235 | 43 | recnd |  |-  ( ph -> ( 2 x. ( log ` A ) ) e. CC ) | 
						
							| 236 | 233 234 235 | add12d |  |-  ( ph -> ( B + ( ( 2 x. ( log ` X ) ) + ( 2 x. ( log ` A ) ) ) ) = ( ( 2 x. ( log ` X ) ) + ( B + ( 2 x. ( log ` A ) ) ) ) ) | 
						
							| 237 | 232 236 | eqtrd |  |-  ( ph -> ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) = ( ( 2 x. ( log ` X ) ) + ( B + ( 2 x. ( log ` A ) ) ) ) ) | 
						
							| 238 | 237 | oveq1d |  |-  ( ph -> ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) = ( ( ( 2 x. ( log ` X ) ) + ( B + ( 2 x. ( log ` A ) ) ) ) x. Y ) ) | 
						
							| 239 | 216 | recnd |  |-  ( ph -> ( B + ( 2 x. ( log ` A ) ) ) e. CC ) | 
						
							| 240 | 15 | recnd |  |-  ( ph -> Y e. CC ) | 
						
							| 241 | 234 239 240 | adddird |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) + ( B + ( 2 x. ( log ` A ) ) ) ) x. Y ) = ( ( ( 2 x. ( log ` X ) ) x. Y ) + ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) ) ) | 
						
							| 242 | 238 241 | eqtrd |  |-  ( ph -> ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) = ( ( ( 2 x. ( log ` X ) ) x. Y ) + ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) ) ) | 
						
							| 243 | 9 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 244 | 234 233 243 | subdird |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) = ( ( ( 2 x. ( log ` X ) ) x. X ) - ( B x. X ) ) ) | 
						
							| 245 | 220 222 | negsubd |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) x. X ) + -u ( B x. X ) ) = ( ( ( 2 x. ( log ` X ) ) x. X ) - ( B x. X ) ) ) | 
						
							| 246 | 244 245 | eqtr4d |  |-  ( ph -> ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) = ( ( ( 2 x. ( log ` X ) ) x. X ) + -u ( B x. X ) ) ) | 
						
							| 247 | 242 246 | oveq12d |  |-  ( ph -> ( ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) - ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) ) = ( ( ( ( 2 x. ( log ` X ) ) x. Y ) + ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) ) - ( ( ( 2 x. ( log ` X ) ) x. X ) + -u ( B x. X ) ) ) ) | 
						
							| 248 | 34 | recnd |  |-  ( ph -> ( Y - X ) e. CC ) | 
						
							| 249 | 229 248 211 | mul32d |  |-  ( ph -> ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) = ( ( 2 x. ( log ` X ) ) x. ( Y - X ) ) ) | 
						
							| 250 | 234 240 243 | subdid |  |-  ( ph -> ( ( 2 x. ( log ` X ) ) x. ( Y - X ) ) = ( ( ( 2 x. ( log ` X ) ) x. Y ) - ( ( 2 x. ( log ` X ) ) x. X ) ) ) | 
						
							| 251 | 249 250 | eqtrd |  |-  ( ph -> ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) = ( ( ( 2 x. ( log ` X ) ) x. Y ) - ( ( 2 x. ( log ` X ) ) x. X ) ) ) | 
						
							| 252 | 38 15 | remulcld |  |-  ( ph -> ( B x. Y ) e. RR ) | 
						
							| 253 | 252 | recnd |  |-  ( ph -> ( B x. Y ) e. CC ) | 
						
							| 254 | 44 | recnd |  |-  ( ph -> ( ( 2 x. ( log ` A ) ) x. Y ) e. CC ) | 
						
							| 255 | 253 222 254 | add32d |  |-  ( ph -> ( ( ( B x. Y ) + ( B x. X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) = ( ( ( B x. Y ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) + ( B x. X ) ) ) | 
						
							| 256 | 233 240 243 | adddid |  |-  ( ph -> ( B x. ( Y + X ) ) = ( ( B x. Y ) + ( B x. X ) ) ) | 
						
							| 257 | 256 | oveq1d |  |-  ( ph -> ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) = ( ( ( B x. Y ) + ( B x. X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) | 
						
							| 258 | 233 235 240 | adddird |  |-  ( ph -> ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) = ( ( B x. Y ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) | 
						
							| 259 | 258 | oveq1d |  |-  ( ph -> ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) + ( B x. X ) ) = ( ( ( B x. Y ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) + ( B x. X ) ) ) | 
						
							| 260 | 255 257 259 | 3eqtr4d |  |-  ( ph -> ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) = ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) + ( B x. X ) ) ) | 
						
							| 261 | 218 222 | subnegd |  |-  ( ph -> ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) - -u ( B x. X ) ) = ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) + ( B x. X ) ) ) | 
						
							| 262 | 260 261 | eqtr4d |  |-  ( ph -> ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) = ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) - -u ( B x. X ) ) ) | 
						
							| 263 | 251 262 | oveq12d |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) = ( ( ( ( 2 x. ( log ` X ) ) x. Y ) - ( ( 2 x. ( log ` X ) ) x. X ) ) + ( ( ( B + ( 2 x. ( log ` A ) ) ) x. Y ) - -u ( B x. X ) ) ) ) | 
						
							| 264 | 224 247 263 | 3eqtr4d |  |-  ( ph -> ( ( ( B + ( 2 x. ( log ` ( A x. X ) ) ) ) x. Y ) - ( ( ( 2 x. ( log ` X ) ) - B ) x. X ) ) = ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) ) | 
						
							| 265 | 204 213 264 | 3brtr3d |  |-  ( ph -> ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) <_ ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) ) | 
						
							| 266 | 49 9 | remulcld |  |-  ( ph -> ( ( B x. ( A + 1 ) ) x. X ) e. RR ) | 
						
							| 267 | 52 9 | remulcld |  |-  ( ph -> ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) e. RR ) | 
						
							| 268 | 15 11 9 163 | leadd1dd |  |-  ( ph -> ( Y + X ) <_ ( ( A x. X ) + X ) ) | 
						
							| 269 | 10 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 270 | 269 243 | adddirp1d |  |-  ( ph -> ( ( A + 1 ) x. X ) = ( ( A x. X ) + X ) ) | 
						
							| 271 | 268 270 | breqtrrd |  |-  ( ph -> ( Y + X ) <_ ( ( A + 1 ) x. X ) ) | 
						
							| 272 | 48 9 | remulcld |  |-  ( ph -> ( ( A + 1 ) x. X ) e. RR ) | 
						
							| 273 | 39 272 3 | lemul2d |  |-  ( ph -> ( ( Y + X ) <_ ( ( A + 1 ) x. X ) <-> ( B x. ( Y + X ) ) <_ ( B x. ( ( A + 1 ) x. X ) ) ) ) | 
						
							| 274 | 271 273 | mpbid |  |-  ( ph -> ( B x. ( Y + X ) ) <_ ( B x. ( ( A + 1 ) x. X ) ) ) | 
						
							| 275 | 48 | recnd |  |-  ( ph -> ( A + 1 ) e. CC ) | 
						
							| 276 | 233 275 243 | mulassd |  |-  ( ph -> ( ( B x. ( A + 1 ) ) x. X ) = ( B x. ( ( A + 1 ) x. X ) ) ) | 
						
							| 277 | 274 276 | breqtrrd |  |-  ( ph -> ( B x. ( Y + X ) ) <_ ( ( B x. ( A + 1 ) ) x. X ) ) | 
						
							| 278 | 33 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 279 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 280 | 279 | a1i |  |-  ( ph -> 0 <_ 2 ) | 
						
							| 281 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 282 |  | 1rp |  |-  1 e. RR+ | 
						
							| 283 |  | logleb |  |-  ( ( 1 e. RR+ /\ A e. RR+ ) -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) | 
						
							| 284 | 282 1 283 | sylancr |  |-  ( ph -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) | 
						
							| 285 | 2 284 | mpbid |  |-  ( ph -> ( log ` 1 ) <_ ( log ` A ) ) | 
						
							| 286 | 281 285 | eqbrtrrid |  |-  ( ph -> 0 <_ ( log ` A ) ) | 
						
							| 287 | 278 41 280 286 | mulge0d |  |-  ( ph -> 0 <_ ( 2 x. ( log ` A ) ) ) | 
						
							| 288 | 15 11 43 287 163 | lemul2ad |  |-  ( ph -> ( ( 2 x. ( log ` A ) ) x. Y ) <_ ( ( 2 x. ( log ` A ) ) x. ( A x. X ) ) ) | 
						
							| 289 | 51 | recnd |  |-  ( ph -> ( 2 x. A ) e. CC ) | 
						
							| 290 | 289 225 243 | mulassd |  |-  ( ph -> ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) = ( ( 2 x. A ) x. ( ( log ` A ) x. X ) ) ) | 
						
							| 291 | 229 269 225 243 | mul4d |  |-  ( ph -> ( ( 2 x. A ) x. ( ( log ` A ) x. X ) ) = ( ( 2 x. ( log ` A ) ) x. ( A x. X ) ) ) | 
						
							| 292 | 290 291 | eqtrd |  |-  ( ph -> ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) = ( ( 2 x. ( log ` A ) ) x. ( A x. X ) ) ) | 
						
							| 293 | 288 292 | breqtrrd |  |-  ( ph -> ( ( 2 x. ( log ` A ) ) x. Y ) <_ ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) ) | 
						
							| 294 | 40 44 266 267 277 293 | le2addd |  |-  ( ph -> ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) <_ ( ( ( B x. ( A + 1 ) ) x. X ) + ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) ) ) | 
						
							| 295 | 5 | oveq1i |  |-  ( C x. X ) = ( ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) x. X ) | 
						
							| 296 | 49 | recnd |  |-  ( ph -> ( B x. ( A + 1 ) ) e. CC ) | 
						
							| 297 | 52 | recnd |  |-  ( ph -> ( ( 2 x. A ) x. ( log ` A ) ) e. CC ) | 
						
							| 298 | 296 297 243 | adddird |  |-  ( ph -> ( ( ( B x. ( A + 1 ) ) + ( ( 2 x. A ) x. ( log ` A ) ) ) x. X ) = ( ( ( B x. ( A + 1 ) ) x. X ) + ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) ) ) | 
						
							| 299 | 295 298 | eqtrid |  |-  ( ph -> ( C x. X ) = ( ( ( B x. ( A + 1 ) ) x. X ) + ( ( ( 2 x. A ) x. ( log ` A ) ) x. X ) ) ) | 
						
							| 300 | 294 299 | breqtrrd |  |-  ( ph -> ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) <_ ( C x. X ) ) | 
						
							| 301 | 45 55 37 300 | leadd2dd |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( B x. ( Y + X ) ) + ( ( 2 x. ( log ` A ) ) x. Y ) ) ) <_ ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( C x. X ) ) ) | 
						
							| 302 | 32 46 56 265 301 | letrd |  |-  ( ph -> ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) <_ ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( C x. X ) ) ) | 
						
							| 303 | 36 | recnd |  |-  ( ph -> ( 2 x. ( Y - X ) ) e. CC ) | 
						
							| 304 | 9 28 | rplogcld |  |-  ( ph -> ( log ` X ) e. RR+ ) | 
						
							| 305 | 9 304 | rerpdivcld |  |-  ( ph -> ( X / ( log ` X ) ) e. RR ) | 
						
							| 306 | 54 305 | remulcld |  |-  ( ph -> ( C x. ( X / ( log ` X ) ) ) e. RR ) | 
						
							| 307 | 306 | recnd |  |-  ( ph -> ( C x. ( X / ( log ` X ) ) ) e. CC ) | 
						
							| 308 | 303 307 211 | adddird |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) x. ( log ` X ) ) = ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( C x. ( X / ( log ` X ) ) ) x. ( log ` X ) ) ) ) | 
						
							| 309 | 54 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 310 | 305 | recnd |  |-  ( ph -> ( X / ( log ` X ) ) e. CC ) | 
						
							| 311 | 309 310 211 | mulassd |  |-  ( ph -> ( ( C x. ( X / ( log ` X ) ) ) x. ( log ` X ) ) = ( C x. ( ( X / ( log ` X ) ) x. ( log ` X ) ) ) ) | 
						
							| 312 | 304 | rpne0d |  |-  ( ph -> ( log ` X ) =/= 0 ) | 
						
							| 313 | 243 211 312 | divcan1d |  |-  ( ph -> ( ( X / ( log ` X ) ) x. ( log ` X ) ) = X ) | 
						
							| 314 | 313 | oveq2d |  |-  ( ph -> ( C x. ( ( X / ( log ` X ) ) x. ( log ` X ) ) ) = ( C x. X ) ) | 
						
							| 315 | 311 314 | eqtrd |  |-  ( ph -> ( ( C x. ( X / ( log ` X ) ) ) x. ( log ` X ) ) = ( C x. X ) ) | 
						
							| 316 | 315 | oveq2d |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( ( C x. ( X / ( log ` X ) ) ) x. ( log ` X ) ) ) = ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( C x. X ) ) ) | 
						
							| 317 | 308 316 | eqtrd |  |-  ( ph -> ( ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) x. ( log ` X ) ) = ( ( ( 2 x. ( Y - X ) ) x. ( log ` X ) ) + ( C x. X ) ) ) | 
						
							| 318 | 302 317 | breqtrrd |  |-  ( ph -> ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) <_ ( ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) x. ( log ` X ) ) ) | 
						
							| 319 | 36 306 | readdcld |  |-  ( ph -> ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) e. RR ) | 
						
							| 320 | 20 319 304 | lemul1d |  |-  ( ph -> ( ( ( psi ` Y ) - ( psi ` X ) ) <_ ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) <-> ( ( ( psi ` Y ) - ( psi ` X ) ) x. ( log ` X ) ) <_ ( ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) x. ( log ` X ) ) ) ) | 
						
							| 321 | 318 320 | mpbird |  |-  ( ph -> ( ( psi ` Y ) - ( psi ` X ) ) <_ ( ( 2 x. ( Y - X ) ) + ( C x. ( X / ( log ` X ) ) ) ) ) |