| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpdifbnd.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | chpdifbnd.1 | ⊢ ( 𝜑  →  1  ≤  𝐴 ) | 
						
							| 3 |  | chpdifbnd.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | chpdifbnd.2 | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) ) )  ≤  𝐵 ) | 
						
							| 5 |  | chpdifbnd.c | ⊢ 𝐶  =  ( ( 𝐵  ·  ( 𝐴  +  1 ) )  +  ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 6 |  | chpdifbnd.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 (,) +∞ ) ) | 
						
							| 7 |  | chpdifbnd.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 [,] ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 8 |  | ioossre | ⊢ ( 1 (,) +∞ )  ⊆  ℝ | 
						
							| 9 | 8 6 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 10 | 1 | rpred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 11 | 10 9 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑋 )  ∈  ℝ ) | 
						
							| 12 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  ( 𝐴  ·  𝑋 )  ∈  ℝ )  →  ( 𝑌  ∈  ( 𝑋 [,] ( 𝐴  ·  𝑋 ) )  ↔  ( 𝑌  ∈  ℝ  ∧  𝑋  ≤  𝑌  ∧  𝑌  ≤  ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 13 | 9 11 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 [,] ( 𝐴  ·  𝑋 ) )  ↔  ( 𝑌  ∈  ℝ  ∧  𝑋  ≤  𝑌  ∧  𝑌  ≤  ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 14 | 7 13 | mpbid | ⊢ ( 𝜑  →  ( 𝑌  ∈  ℝ  ∧  𝑋  ≤  𝑌  ∧  𝑌  ≤  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 15 | 14 | simp1d | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 16 |  | chpcl | ⊢ ( 𝑌  ∈  ℝ  →  ( ψ ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ψ ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 18 |  | chpcl | ⊢ ( 𝑋  ∈  ℝ  →  ( ψ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 19 | 9 18 | syl | ⊢ ( 𝜑  →  ( ψ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 20 | 17 19 | resubcld | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 21 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 22 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 24 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 26 |  | eliooord | ⊢ ( 𝑋  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑋  ∧  𝑋  <  +∞ ) ) | 
						
							| 27 | 6 26 | syl | ⊢ ( 𝜑  →  ( 1  <  𝑋  ∧  𝑋  <  +∞ ) ) | 
						
							| 28 | 27 | simpld | ⊢ ( 𝜑  →  1  <  𝑋 ) | 
						
							| 29 | 21 23 9 25 28 | lttrd | ⊢ ( 𝜑  →  0  <  𝑋 ) | 
						
							| 30 | 9 29 | elrpd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 31 | 30 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 32 | 20 31 | remulcld | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 33 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 34 | 15 9 | resubcld | ⊢ ( 𝜑  →  ( 𝑌  −  𝑋 )  ∈  ℝ ) | 
						
							| 35 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( 𝑌  −  𝑋 )  ∈  ℝ )  →  ( 2  ·  ( 𝑌  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 36 | 33 34 35 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑌  −  𝑋 ) )  ∈  ℝ ) | 
						
							| 37 | 36 31 | remulcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 38 | 3 | rpred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 39 | 15 9 | readdcld | ⊢ ( 𝜑  →  ( 𝑌  +  𝑋 )  ∈  ℝ ) | 
						
							| 40 | 38 39 | remulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  ∈  ℝ ) | 
						
							| 41 | 1 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 42 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ 𝐴 )  ∈  ℝ )  →  ( 2  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 43 | 33 41 42 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 44 | 43 15 | remulcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 )  ∈  ℝ ) | 
						
							| 45 | 40 44 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  ∈  ℝ ) | 
						
							| 46 | 37 45 | readdcld | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) )  ∈  ℝ ) | 
						
							| 47 |  | peano2re | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 48 | 10 47 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 49 | 38 48 | remulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝐴  +  1 ) )  ∈  ℝ ) | 
						
							| 50 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 51 | 33 10 50 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 52 | 51 41 | remulcld | ⊢ ( 𝜑  →  ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 53 | 49 52 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝐴  +  1 ) )  +  ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 54 | 5 53 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 55 | 54 9 | remulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  𝑋 )  ∈  ℝ ) | 
						
							| 56 | 37 55 | readdcld | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( 𝐶  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 57 | 17 31 | remulcld | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 58 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ 𝑋 ) )  ∈  Fin ) | 
						
							| 59 | 14 | simp2d | ⊢ ( 𝜑  →  𝑋  ≤  𝑌 ) | 
						
							| 60 |  | flword2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ  ∧  𝑋  ≤  𝑌 )  →  ( ⌊ ‘ 𝑌 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) | 
						
							| 61 | 9 15 59 60 | syl3anc | ⊢ ( 𝜑  →  ( ⌊ ‘ 𝑌 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) | 
						
							| 62 |  | fzss2 | ⊢ ( ( ⌊ ‘ 𝑌 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) )  →  ( 1 ... ( ⌊ ‘ 𝑋 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ 𝑋 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 64 | 63 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) )  →  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 65 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 67 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 69 |  | nndivre | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( 𝑋  /  𝑛 )  ∈  ℝ ) | 
						
							| 70 | 9 65 69 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( 𝑋  /  𝑛 )  ∈  ℝ ) | 
						
							| 71 |  | chpcl | ⊢ ( ( 𝑋  /  𝑛 )  ∈  ℝ  →  ( ψ ‘ ( 𝑋  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ψ ‘ ( 𝑋  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 73 | 68 72 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 74 | 64 73 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 75 | 58 74 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 76 | 57 75 | readdcld | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 77 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ 𝑋 )  ∈  ℝ )  →  ( 2  ·  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 78 | 33 31 77 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 79 | 78 38 | resubcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ∈  ℝ ) | 
						
							| 80 | 79 9 | remulcld | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 81 | 1 30 | rpmulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑋 )  ∈  ℝ+ ) | 
						
							| 82 | 81 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐴  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 83 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ ( 𝐴  ·  𝑋 ) )  ∈  ℝ )  →  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 84 | 33 82 83 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 85 | 38 84 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 86 | 85 15 | remulcld | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 )  ∈  ℝ ) | 
						
							| 87 | 19 31 | remulcld | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 88 | 87 75 | readdcld | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 89 | 21 9 15 29 59 | ltletrd | ⊢ ( 𝜑  →  0  <  𝑌 ) | 
						
							| 90 | 15 89 | elrpd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ+ ) | 
						
							| 91 | 90 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 92 | 17 91 | remulcld | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 93 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ 𝑌 ) )  ∈  Fin ) | 
						
							| 94 |  | nndivre | ⊢ ( ( 𝑌  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( 𝑌  /  𝑛 )  ∈  ℝ ) | 
						
							| 95 | 15 65 94 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( 𝑌  /  𝑛 )  ∈  ℝ ) | 
						
							| 96 |  | chpcl | ⊢ ( ( 𝑌  /  𝑛 )  ∈  ℝ  →  ( ψ ‘ ( 𝑌  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 97 | 95 96 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ψ ‘ ( 𝑌  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 98 | 68 97 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 99 | 93 98 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 100 | 92 99 | readdcld | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 101 |  | chpge0 | ⊢ ( 𝑌  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑌 ) ) | 
						
							| 102 | 15 101 | syl | ⊢ ( 𝜑  →  0  ≤  ( ψ ‘ 𝑌 ) ) | 
						
							| 103 | 30 90 | logled | ⊢ ( 𝜑  →  ( 𝑋  ≤  𝑌  ↔  ( log ‘ 𝑋 )  ≤  ( log ‘ 𝑌 ) ) ) | 
						
							| 104 | 59 103 | mpbid | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ≤  ( log ‘ 𝑌 ) ) | 
						
							| 105 | 31 91 17 102 104 | lemul2ad | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  ≤  ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) ) ) | 
						
							| 106 | 93 73 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 107 |  | vmage0 | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 108 | 66 107 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 109 |  | chpge0 | ⊢ ( ( 𝑋  /  𝑛 )  ∈  ℝ  →  0  ≤  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) | 
						
							| 110 | 70 109 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  0  ≤  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) | 
						
							| 111 | 68 72 108 110 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) | 
						
							| 112 | 93 73 111 63 | fsumless | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) | 
						
							| 113 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 114 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑌  ∈  ℝ ) | 
						
							| 115 | 66 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 116 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑋  ≤  𝑌 ) | 
						
							| 117 | 113 114 115 116 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( 𝑋  /  𝑛 )  ≤  ( 𝑌  /  𝑛 ) ) | 
						
							| 118 |  | chpwordi | ⊢ ( ( ( 𝑋  /  𝑛 )  ∈  ℝ  ∧  ( 𝑌  /  𝑛 )  ∈  ℝ  ∧  ( 𝑋  /  𝑛 )  ≤  ( 𝑌  /  𝑛 ) )  →  ( ψ ‘ ( 𝑋  /  𝑛 ) )  ≤  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) | 
						
							| 119 | 70 95 117 118 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ψ ‘ ( 𝑋  /  𝑛 ) )  ≤  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) | 
						
							| 120 | 72 97 68 108 119 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ≤  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) | 
						
							| 121 | 93 73 98 120 | fsumle | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) | 
						
							| 122 | 75 106 99 112 121 | letrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) | 
						
							| 123 | 57 75 92 99 105 122 | le2addd | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  ≤  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) ) | 
						
							| 124 | 100 90 | rerpdivcld | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  ∈  ℝ ) | 
						
							| 125 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ 𝑌 )  ∈  ℝ )  →  ( 2  ·  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 126 | 33 91 125 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 127 | 38 126 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ 𝑌 ) ) )  ∈  ℝ ) | 
						
							| 128 | 124 126 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) )  ∈  ℝ ) | 
						
							| 129 | 128 | recnd | ⊢ ( 𝜑  →  ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) )  ∈  ℂ ) | 
						
							| 130 | 129 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) ) )  ∈  ℝ ) | 
						
							| 131 | 128 | leabsd | ⊢ ( 𝜑  →  ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) )  ≤  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) ) ) ) | 
						
							| 132 |  | fveq2 | ⊢ ( 𝑧  =  𝑌  →  ( ψ ‘ 𝑧 )  =  ( ψ ‘ 𝑌 ) ) | 
						
							| 133 |  | fveq2 | ⊢ ( 𝑧  =  𝑌  →  ( log ‘ 𝑧 )  =  ( log ‘ 𝑌 ) ) | 
						
							| 134 | 132 133 | oveq12d | ⊢ ( 𝑧  =  𝑌  →  ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  =  ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) ) ) | 
						
							| 135 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( Λ ‘ 𝑚 )  =  ( Λ ‘ 𝑛 ) ) | 
						
							| 136 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  /  𝑚 )  =  ( 𝑧  /  𝑛 ) ) | 
						
							| 137 | 136 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ψ ‘ ( 𝑧  /  𝑚 ) )  =  ( ψ ‘ ( 𝑧  /  𝑛 ) ) ) | 
						
							| 138 | 135 137 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑧  /  𝑛 ) ) ) ) | 
						
							| 139 | 138 | cbvsumv | ⊢ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑧  /  𝑛 ) ) ) | 
						
							| 140 |  | fveq2 | ⊢ ( 𝑧  =  𝑌  →  ( ⌊ ‘ 𝑧 )  =  ( ⌊ ‘ 𝑌 ) ) | 
						
							| 141 | 140 | oveq2d | ⊢ ( 𝑧  =  𝑌  →  ( 1 ... ( ⌊ ‘ 𝑧 ) )  =  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) | 
						
							| 142 |  | simpl | ⊢ ( ( 𝑧  =  𝑌  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  𝑧  =  𝑌 ) | 
						
							| 143 | 142 | fvoveq1d | ⊢ ( ( 𝑧  =  𝑌  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ψ ‘ ( 𝑧  /  𝑛 ) )  =  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( 𝑧  =  𝑌  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑧  /  𝑛 ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) | 
						
							| 145 | 141 144 | sumeq12rdv | ⊢ ( 𝑧  =  𝑌  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑧  /  𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) | 
						
							| 146 | 139 145 | eqtrid | ⊢ ( 𝑧  =  𝑌  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) | 
						
							| 147 | 134 146 | oveq12d | ⊢ ( 𝑧  =  𝑌  →  ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  =  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) ) ) | 
						
							| 148 |  | id | ⊢ ( 𝑧  =  𝑌  →  𝑧  =  𝑌 ) | 
						
							| 149 | 147 148 | oveq12d | ⊢ ( 𝑧  =  𝑌  →  ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  =  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 ) ) | 
						
							| 150 | 133 | oveq2d | ⊢ ( 𝑧  =  𝑌  →  ( 2  ·  ( log ‘ 𝑧 ) )  =  ( 2  ·  ( log ‘ 𝑌 ) ) ) | 
						
							| 151 | 149 150 | oveq12d | ⊢ ( 𝑧  =  𝑌  →  ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) )  =  ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) ) ) | 
						
							| 152 | 151 | fveq2d | ⊢ ( 𝑧  =  𝑌  →  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) ) )  =  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) ) ) ) | 
						
							| 153 | 152 | breq1d | ⊢ ( 𝑧  =  𝑌  →  ( ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) ) )  ≤  𝐵  ↔  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) ) )  ≤  𝐵 ) ) | 
						
							| 154 | 23 9 28 | ltled | ⊢ ( 𝜑  →  1  ≤  𝑋 ) | 
						
							| 155 | 23 9 15 154 59 | letrd | ⊢ ( 𝜑  →  1  ≤  𝑌 ) | 
						
							| 156 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑌  ∈  ( 1 [,) +∞ )  ↔  ( 𝑌  ∈  ℝ  ∧  1  ≤  𝑌 ) ) ) | 
						
							| 157 | 22 156 | ax-mp | ⊢ ( 𝑌  ∈  ( 1 [,) +∞ )  ↔  ( 𝑌  ∈  ℝ  ∧  1  ≤  𝑌 ) ) | 
						
							| 158 | 15 155 157 | sylanbrc | ⊢ ( 𝜑  →  𝑌  ∈  ( 1 [,) +∞ ) ) | 
						
							| 159 | 153 4 158 | rspcdva | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) ) )  ≤  𝐵 ) | 
						
							| 160 | 128 130 38 131 159 | letrd | ⊢ ( 𝜑  →  ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) )  ≤  𝐵 ) | 
						
							| 161 | 124 126 38 | lesubaddd | ⊢ ( 𝜑  →  ( ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  −  ( 2  ·  ( log ‘ 𝑌 ) ) )  ≤  𝐵  ↔  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  ≤  ( 𝐵  +  ( 2  ·  ( log ‘ 𝑌 ) ) ) ) ) | 
						
							| 162 | 160 161 | mpbid | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  ≤  ( 𝐵  +  ( 2  ·  ( log ‘ 𝑌 ) ) ) ) | 
						
							| 163 | 14 | simp3d | ⊢ ( 𝜑  →  𝑌  ≤  ( 𝐴  ·  𝑋 ) ) | 
						
							| 164 | 90 81 | logled | ⊢ ( 𝜑  →  ( 𝑌  ≤  ( 𝐴  ·  𝑋 )  ↔  ( log ‘ 𝑌 )  ≤  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 165 | 163 164 | mpbid | ⊢ ( 𝜑  →  ( log ‘ 𝑌 )  ≤  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 166 |  | 2pos | ⊢ 0  <  2 | 
						
							| 167 | 33 166 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 168 | 167 | a1i | ⊢ ( 𝜑  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 169 |  | lemul2 | ⊢ ( ( ( log ‘ 𝑌 )  ∈  ℝ  ∧  ( log ‘ ( 𝐴  ·  𝑋 ) )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( log ‘ 𝑌 )  ≤  ( log ‘ ( 𝐴  ·  𝑋 ) )  ↔  ( 2  ·  ( log ‘ 𝑌 ) )  ≤  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) ) ) | 
						
							| 170 | 91 82 168 169 | syl3anc | ⊢ ( 𝜑  →  ( ( log ‘ 𝑌 )  ≤  ( log ‘ ( 𝐴  ·  𝑋 ) )  ↔  ( 2  ·  ( log ‘ 𝑌 ) )  ≤  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) ) ) | 
						
							| 171 | 165 170 | mpbid | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝑌 ) )  ≤  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 172 | 126 84 38 171 | leadd2dd | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ 𝑌 ) ) )  ≤  ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) ) ) | 
						
							| 173 | 124 127 85 162 172 | letrd | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  ≤  ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) ) ) | 
						
							| 174 | 100 85 90 | ledivmul2d | ⊢ ( 𝜑  →  ( ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  /  𝑌 )  ≤  ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ↔  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  ≤  ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 ) ) ) | 
						
							| 175 | 173 174 | mpbid | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑌 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑌  /  𝑛 ) ) ) )  ≤  ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 ) ) | 
						
							| 176 | 76 100 86 123 175 | letrd | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  ≤  ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 ) ) | 
						
							| 177 |  | fveq2 | ⊢ ( 𝑧  =  𝑋  →  ( ψ ‘ 𝑧 )  =  ( ψ ‘ 𝑋 ) ) | 
						
							| 178 |  | fveq2 | ⊢ ( 𝑧  =  𝑋  →  ( log ‘ 𝑧 )  =  ( log ‘ 𝑋 ) ) | 
						
							| 179 | 177 178 | oveq12d | ⊢ ( 𝑧  =  𝑋  →  ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  =  ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) ) ) | 
						
							| 180 |  | fveq2 | ⊢ ( 𝑧  =  𝑋  →  ( ⌊ ‘ 𝑧 )  =  ( ⌊ ‘ 𝑋 ) ) | 
						
							| 181 | 180 | oveq2d | ⊢ ( 𝑧  =  𝑋  →  ( 1 ... ( ⌊ ‘ 𝑧 ) )  =  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) | 
						
							| 182 |  | simpl | ⊢ ( ( 𝑧  =  𝑋  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) )  →  𝑧  =  𝑋 ) | 
						
							| 183 | 182 | fvoveq1d | ⊢ ( ( 𝑧  =  𝑋  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) )  →  ( ψ ‘ ( 𝑧  /  𝑛 ) )  =  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) | 
						
							| 184 | 183 | oveq2d | ⊢ ( ( 𝑧  =  𝑋  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑧  /  𝑛 ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) | 
						
							| 185 | 181 184 | sumeq12rdv | ⊢ ( 𝑧  =  𝑋  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑧  /  𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) | 
						
							| 186 | 139 185 | eqtrid | ⊢ ( 𝑧  =  𝑋  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) | 
						
							| 187 | 179 186 | oveq12d | ⊢ ( 𝑧  =  𝑋  →  ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  =  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) ) | 
						
							| 188 |  | id | ⊢ ( 𝑧  =  𝑋  →  𝑧  =  𝑋 ) | 
						
							| 189 | 187 188 | oveq12d | ⊢ ( 𝑧  =  𝑋  →  ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  =  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 ) ) | 
						
							| 190 | 178 | oveq2d | ⊢ ( 𝑧  =  𝑋  →  ( 2  ·  ( log ‘ 𝑧 ) )  =  ( 2  ·  ( log ‘ 𝑋 ) ) ) | 
						
							| 191 | 189 190 | oveq12d | ⊢ ( 𝑧  =  𝑋  →  ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) )  =  ( ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  −  ( 2  ·  ( log ‘ 𝑋 ) ) ) ) | 
						
							| 192 | 191 | fveq2d | ⊢ ( 𝑧  =  𝑋  →  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) ) )  =  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  −  ( 2  ·  ( log ‘ 𝑋 ) ) ) ) ) | 
						
							| 193 | 192 | breq1d | ⊢ ( 𝑧  =  𝑋  →  ( ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 )  ·  ( log ‘ 𝑧 ) )  +  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ψ ‘ ( 𝑧  /  𝑚 ) ) ) )  /  𝑧 )  −  ( 2  ·  ( log ‘ 𝑧 ) ) ) )  ≤  𝐵  ↔  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  −  ( 2  ·  ( log ‘ 𝑋 ) ) ) )  ≤  𝐵 ) ) | 
						
							| 194 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑋  ∈  ( 1 [,) +∞ )  ↔  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) ) | 
						
							| 195 | 22 194 | ax-mp | ⊢ ( 𝑋  ∈  ( 1 [,) +∞ )  ↔  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) | 
						
							| 196 | 9 154 195 | sylanbrc | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 [,) +∞ ) ) | 
						
							| 197 | 193 4 196 | rspcdva | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  −  ( 2  ·  ( log ‘ 𝑋 ) ) ) )  ≤  𝐵 ) | 
						
							| 198 | 88 30 | rerpdivcld | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  ∈  ℝ ) | 
						
							| 199 | 198 78 38 | absdifled | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  −  ( 2  ·  ( log ‘ 𝑋 ) ) ) )  ≤  𝐵  ↔  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ≤  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  ∧  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  ≤  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  𝐵 ) ) ) ) | 
						
							| 200 | 197 199 | mpbid | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ≤  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  ∧  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 )  ≤  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  𝐵 ) ) ) | 
						
							| 201 | 200 | simpld | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ≤  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 ) ) | 
						
							| 202 | 79 88 30 | lemuldivd | ⊢ ( 𝜑  →  ( ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 )  ≤  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  ↔  ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ≤  ( ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  /  𝑋 ) ) ) | 
						
							| 203 | 201 202 | mpbird | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 )  ≤  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) ) | 
						
							| 204 | 76 80 86 88 176 203 | le2subd | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  −  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) )  ≤  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 )  −  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 ) ) ) | 
						
							| 205 | 57 | recnd | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 206 | 87 | recnd | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 207 | 75 | recnd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 208 | 205 206 207 | pnpcan2d | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  −  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) )  =  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  −  ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) ) ) ) | 
						
							| 209 | 17 | recnd | ⊢ ( 𝜑  →  ( ψ ‘ 𝑌 )  ∈  ℂ ) | 
						
							| 210 | 19 | recnd | ⊢ ( 𝜑  →  ( ψ ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 211 | 31 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 212 | 209 210 211 | subdird | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  =  ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  −  ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) ) ) ) | 
						
							| 213 | 208 212 | eqtr4d | ⊢ ( 𝜑  →  ( ( ( ( ψ ‘ 𝑌 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) )  −  ( ( ( ψ ‘ 𝑋 )  ·  ( log ‘ 𝑋 ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑋  /  𝑛 ) ) ) ) )  =  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) ) ) | 
						
							| 214 | 78 15 | remulcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  ∈  ℝ ) | 
						
							| 215 | 214 | recnd | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  ∈  ℂ ) | 
						
							| 216 | 38 43 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 217 | 216 15 | remulcld | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  ∈  ℝ ) | 
						
							| 218 | 217 | recnd | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  ∈  ℂ ) | 
						
							| 219 | 78 9 | remulcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 220 | 219 | recnd | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  ∈  ℂ ) | 
						
							| 221 | 38 9 | remulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑋 )  ∈  ℝ ) | 
						
							| 222 | 221 | recnd | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑋 )  ∈  ℂ ) | 
						
							| 223 | 222 | negcld | ⊢ ( 𝜑  →  - ( 𝐵  ·  𝑋 )  ∈  ℂ ) | 
						
							| 224 | 215 218 220 223 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  +  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 ) )  −  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  +  - ( 𝐵  ·  𝑋 ) ) )  =  ( ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  −  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 ) )  +  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  −  - ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 225 | 41 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 226 | 1 30 | relogmuld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐴  ·  𝑋 ) )  =  ( ( log ‘ 𝐴 )  +  ( log ‘ 𝑋 ) ) ) | 
						
							| 227 | 225 211 226 | comraddd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐴  ·  𝑋 ) )  =  ( ( log ‘ 𝑋 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 228 | 227 | oveq2d | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) )  =  ( 2  ·  ( ( log ‘ 𝑋 )  +  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 229 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 230 | 229 211 225 | adddid | ⊢ ( 𝜑  →  ( 2  ·  ( ( log ‘ 𝑋 )  +  ( log ‘ 𝐴 ) ) )  =  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 231 | 228 230 | eqtrd | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) )  =  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 232 | 231 | oveq2d | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  =  ( 𝐵  +  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 233 | 38 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 234 | 78 | recnd | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 235 | 43 | recnd | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 236 | 233 234 235 | add12d | ⊢ ( 𝜑  →  ( 𝐵  +  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) )  =  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 237 | 232 236 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  =  ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 238 | 237 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) )  ·  𝑌 ) ) | 
						
							| 239 | 216 | recnd | ⊢ ( 𝜑  →  ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 240 | 15 | recnd | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 241 | 234 239 240 | adddird | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  +  ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) ) )  ·  𝑌 )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  +  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 ) ) ) | 
						
							| 242 | 238 241 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  +  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 ) ) ) | 
						
							| 243 | 9 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 244 | 234 233 243 | subdird | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 245 | 220 222 | negsubd | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  +  - ( 𝐵  ·  𝑋 ) )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 246 | 244 245 | eqtr4d | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  +  - ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 247 | 242 246 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 )  −  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 ) )  =  ( ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  +  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 ) )  −  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 )  +  - ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 248 | 34 | recnd | ⊢ ( 𝜑  →  ( 𝑌  −  𝑋 )  ∈  ℂ ) | 
						
							| 249 | 229 248 211 | mul32d | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  =  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  ( 𝑌  −  𝑋 ) ) ) | 
						
							| 250 | 234 240 243 | subdid | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  ( 𝑌  −  𝑋 ) )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  −  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 ) ) ) | 
						
							| 251 | 249 250 | eqtrd | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  =  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  −  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 ) ) ) | 
						
							| 252 | 38 15 | remulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑌 )  ∈  ℝ ) | 
						
							| 253 | 252 | recnd | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑌 )  ∈  ℂ ) | 
						
							| 254 | 44 | recnd | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 )  ∈  ℂ ) | 
						
							| 255 | 253 222 254 | add32d | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝑌 )  +  ( 𝐵  ·  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  =  ( ( ( 𝐵  ·  𝑌 )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 256 | 233 240 243 | adddid | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  =  ( ( 𝐵  ·  𝑌 )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 257 | 256 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  =  ( ( ( 𝐵  ·  𝑌 )  +  ( 𝐵  ·  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) ) | 
						
							| 258 | 233 235 240 | adddird | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  =  ( ( 𝐵  ·  𝑌 )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) ) | 
						
							| 259 | 258 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  +  ( 𝐵  ·  𝑋 ) )  =  ( ( ( 𝐵  ·  𝑌 )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 260 | 255 257 259 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  =  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 261 | 218 222 | subnegd | ⊢ ( 𝜑  →  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  −  - ( 𝐵  ·  𝑋 ) )  =  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 262 | 260 261 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  =  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  −  - ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 263 | 251 262 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) )  =  ( ( ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑌 )  −  ( ( 2  ·  ( log ‘ 𝑋 ) )  ·  𝑋 ) )  +  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ 𝐴 ) ) )  ·  𝑌 )  −  - ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 264 | 224 247 263 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ( 𝐵  +  ( 2  ·  ( log ‘ ( 𝐴  ·  𝑋 ) ) ) )  ·  𝑌 )  −  ( ( ( 2  ·  ( log ‘ 𝑋 ) )  −  𝐵 )  ·  𝑋 ) )  =  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) ) ) | 
						
							| 265 | 204 213 264 | 3brtr3d | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  ≤  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) ) ) | 
						
							| 266 | 49 9 | remulcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝐴  +  1 ) )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 267 | 52 9 | remulcld | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 268 | 15 11 9 163 | leadd1dd | ⊢ ( 𝜑  →  ( 𝑌  +  𝑋 )  ≤  ( ( 𝐴  ·  𝑋 )  +  𝑋 ) ) | 
						
							| 269 | 10 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 270 | 269 243 | adddirp1d | ⊢ ( 𝜑  →  ( ( 𝐴  +  1 )  ·  𝑋 )  =  ( ( 𝐴  ·  𝑋 )  +  𝑋 ) ) | 
						
							| 271 | 268 270 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑌  +  𝑋 )  ≤  ( ( 𝐴  +  1 )  ·  𝑋 ) ) | 
						
							| 272 | 48 9 | remulcld | ⊢ ( 𝜑  →  ( ( 𝐴  +  1 )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 273 | 39 272 3 | lemul2d | ⊢ ( 𝜑  →  ( ( 𝑌  +  𝑋 )  ≤  ( ( 𝐴  +  1 )  ·  𝑋 )  ↔  ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  ≤  ( 𝐵  ·  ( ( 𝐴  +  1 )  ·  𝑋 ) ) ) ) | 
						
							| 274 | 271 273 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  ≤  ( 𝐵  ·  ( ( 𝐴  +  1 )  ·  𝑋 ) ) ) | 
						
							| 275 | 48 | recnd | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 276 | 233 275 243 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝐴  +  1 ) )  ·  𝑋 )  =  ( 𝐵  ·  ( ( 𝐴  +  1 )  ·  𝑋 ) ) ) | 
						
							| 277 | 274 276 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  ≤  ( ( 𝐵  ·  ( 𝐴  +  1 ) )  ·  𝑋 ) ) | 
						
							| 278 | 33 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 279 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 280 | 279 | a1i | ⊢ ( 𝜑  →  0  ≤  2 ) | 
						
							| 281 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 282 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 283 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  𝐴  ∈  ℝ+ )  →  ( 1  ≤  𝐴  ↔  ( log ‘ 1 )  ≤  ( log ‘ 𝐴 ) ) ) | 
						
							| 284 | 282 1 283 | sylancr | ⊢ ( 𝜑  →  ( 1  ≤  𝐴  ↔  ( log ‘ 1 )  ≤  ( log ‘ 𝐴 ) ) ) | 
						
							| 285 | 2 284 | mpbid | ⊢ ( 𝜑  →  ( log ‘ 1 )  ≤  ( log ‘ 𝐴 ) ) | 
						
							| 286 | 281 285 | eqbrtrrid | ⊢ ( 𝜑  →  0  ≤  ( log ‘ 𝐴 ) ) | 
						
							| 287 | 278 41 280 286 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( 2  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 288 | 15 11 43 287 163 | lemul2ad | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 )  ≤  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 289 | 51 | recnd | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 290 | 289 225 243 | mulassd | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 )  =  ( ( 2  ·  𝐴 )  ·  ( ( log ‘ 𝐴 )  ·  𝑋 ) ) ) | 
						
							| 291 | 229 269 225 243 | mul4d | ⊢ ( 𝜑  →  ( ( 2  ·  𝐴 )  ·  ( ( log ‘ 𝐴 )  ·  𝑋 ) )  =  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 292 | 290 291 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 )  =  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 293 | 288 292 | breqtrrd | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 )  ≤  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 ) ) | 
						
							| 294 | 40 44 266 267 277 293 | le2addd | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  ≤  ( ( ( 𝐵  ·  ( 𝐴  +  1 ) )  ·  𝑋 )  +  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 ) ) ) | 
						
							| 295 | 5 | oveq1i | ⊢ ( 𝐶  ·  𝑋 )  =  ( ( ( 𝐵  ·  ( 𝐴  +  1 ) )  +  ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) ) )  ·  𝑋 ) | 
						
							| 296 | 49 | recnd | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝐴  +  1 ) )  ∈  ℂ ) | 
						
							| 297 | 52 | recnd | ⊢ ( 𝜑  →  ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 298 | 296 297 243 | adddird | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  ( 𝐴  +  1 ) )  +  ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) ) )  ·  𝑋 )  =  ( ( ( 𝐵  ·  ( 𝐴  +  1 ) )  ·  𝑋 )  +  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 ) ) ) | 
						
							| 299 | 295 298 | eqtrid | ⊢ ( 𝜑  →  ( 𝐶  ·  𝑋 )  =  ( ( ( 𝐵  ·  ( 𝐴  +  1 ) )  ·  𝑋 )  +  ( ( ( 2  ·  𝐴 )  ·  ( log ‘ 𝐴 ) )  ·  𝑋 ) ) ) | 
						
							| 300 | 294 299 | breqtrrd | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) )  ≤  ( 𝐶  ·  𝑋 ) ) | 
						
							| 301 | 45 55 37 300 | leadd2dd | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐵  ·  ( 𝑌  +  𝑋 ) )  +  ( ( 2  ·  ( log ‘ 𝐴 ) )  ·  𝑌 ) ) )  ≤  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 302 | 32 46 56 265 301 | letrd | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  ≤  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 303 | 36 | recnd | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑌  −  𝑋 ) )  ∈  ℂ ) | 
						
							| 304 | 9 28 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℝ+ ) | 
						
							| 305 | 9 304 | rerpdivcld | ⊢ ( 𝜑  →  ( 𝑋  /  ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 306 | 54 305 | remulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 307 | 306 | recnd | ⊢ ( 𝜑  →  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) )  ∈  ℂ ) | 
						
							| 308 | 303 307 211 | adddird | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) )  ·  ( log ‘ 𝑋 ) )  =  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) )  ·  ( log ‘ 𝑋 ) ) ) ) | 
						
							| 309 | 54 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 310 | 305 | recnd | ⊢ ( 𝜑  →  ( 𝑋  /  ( log ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 311 | 309 310 211 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) )  ·  ( log ‘ 𝑋 ) )  =  ( 𝐶  ·  ( ( 𝑋  /  ( log ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) ) ) ) | 
						
							| 312 | 304 | rpne0d | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ≠  0 ) | 
						
							| 313 | 243 211 312 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝑋  /  ( log ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 314 | 313 | oveq2d | ⊢ ( 𝜑  →  ( 𝐶  ·  ( ( 𝑋  /  ( log ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) ) )  =  ( 𝐶  ·  𝑋 ) ) | 
						
							| 315 | 311 314 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) )  ·  ( log ‘ 𝑋 ) )  =  ( 𝐶  ·  𝑋 ) ) | 
						
							| 316 | 315 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) )  ·  ( log ‘ 𝑋 ) ) )  =  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 317 | 308 316 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) )  ·  ( log ‘ 𝑋 ) )  =  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  ·  ( log ‘ 𝑋 ) )  +  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 318 | 302 317 | breqtrrd | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  ≤  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) )  ·  ( log ‘ 𝑋 ) ) ) | 
						
							| 319 | 36 306 | readdcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 320 | 20 319 304 | lemul1d | ⊢ ( 𝜑  →  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ≤  ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) )  ↔  ( ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ·  ( log ‘ 𝑋 ) )  ≤  ( ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) )  ·  ( log ‘ 𝑋 ) ) ) ) | 
						
							| 321 | 318 320 | mpbird | ⊢ ( 𝜑  →  ( ( ψ ‘ 𝑌 )  −  ( ψ ‘ 𝑋 ) )  ≤  ( ( 2  ·  ( 𝑌  −  𝑋 ) )  +  ( 𝐶  ·  ( 𝑋  /  ( log ‘ 𝑋 ) ) ) ) ) |