Metamath Proof Explorer


Theorem ppi2i

Description: Inference form of ppinprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m
|- M e. NN0
ppi1i.n
|- N = ( M + 1 )
ppi1i.p
|- ( ppi ` M ) = K
ppi2i.1
|- -. N e. Prime
Assertion ppi2i
|- ( ppi ` N ) = K

Proof

Step Hyp Ref Expression
1 ppi1i.m
 |-  M e. NN0
2 ppi1i.n
 |-  N = ( M + 1 )
3 ppi1i.p
 |-  ( ppi ` M ) = K
4 ppi2i.1
 |-  -. N e. Prime
5 2 fveq2i
 |-  ( ppi ` N ) = ( ppi ` ( M + 1 ) )
6 1 nn0zi
 |-  M e. ZZ
7 2 eleq1i
 |-  ( N e. Prime <-> ( M + 1 ) e. Prime )
8 4 7 mtbi
 |-  -. ( M + 1 ) e. Prime
9 ppinprm
 |-  ( ( M e. ZZ /\ -. ( M + 1 ) e. Prime ) -> ( ppi ` ( M + 1 ) ) = ( ppi ` M ) )
10 6 8 9 mp2an
 |-  ( ppi ` ( M + 1 ) ) = ( ppi ` M )
11 5 10 3 3eqtri
 |-  ( ppi ` N ) = K