Description: Inference form of ppinprm . (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ppi1i.m | ⊢ 𝑀 ∈ ℕ0 | |
| ppi1i.n | ⊢ 𝑁 = ( 𝑀 + 1 ) | ||
| ppi1i.p | ⊢ ( π ‘ 𝑀 ) = 𝐾 | ||
| ppi2i.1 | ⊢ ¬ 𝑁 ∈ ℙ | ||
| Assertion | ppi2i | ⊢ ( π ‘ 𝑁 ) = 𝐾 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppi1i.m | ⊢ 𝑀 ∈ ℕ0 | |
| 2 | ppi1i.n | ⊢ 𝑁 = ( 𝑀 + 1 ) | |
| 3 | ppi1i.p | ⊢ ( π ‘ 𝑀 ) = 𝐾 | |
| 4 | ppi2i.1 | ⊢ ¬ 𝑁 ∈ ℙ | |
| 5 | 2 | fveq2i | ⊢ ( π ‘ 𝑁 ) = ( π ‘ ( 𝑀 + 1 ) ) |
| 6 | 1 | nn0zi | ⊢ 𝑀 ∈ ℤ |
| 7 | 2 | eleq1i | ⊢ ( 𝑁 ∈ ℙ ↔ ( 𝑀 + 1 ) ∈ ℙ ) |
| 8 | 4 7 | mtbi | ⊢ ¬ ( 𝑀 + 1 ) ∈ ℙ |
| 9 | ppinprm | ⊢ ( ( 𝑀 ∈ ℤ ∧ ¬ ( 𝑀 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝑀 + 1 ) ) = ( π ‘ 𝑀 ) ) | |
| 10 | 6 8 9 | mp2an | ⊢ ( π ‘ ( 𝑀 + 1 ) ) = ( π ‘ 𝑀 ) |
| 11 | 5 10 3 | 3eqtri | ⊢ ( π ‘ 𝑁 ) = 𝐾 |