| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsn2 |
|- { A } = { A , A } |
| 2 |
|
ensn1g |
|- ( A e. C -> { A } ~~ 1o ) |
| 3 |
|
endom |
|- ( { A } ~~ 1o -> { A } ~<_ 1o ) |
| 4 |
|
1sdom2 |
|- 1o ~< 2o |
| 5 |
|
domsdomtr |
|- ( ( { A } ~<_ 1o /\ 1o ~< 2o ) -> { A } ~< 2o ) |
| 6 |
|
sdomdom |
|- ( { A } ~< 2o -> { A } ~<_ 2o ) |
| 7 |
5 6
|
syl |
|- ( ( { A } ~<_ 1o /\ 1o ~< 2o ) -> { A } ~<_ 2o ) |
| 8 |
3 4 7
|
sylancl |
|- ( { A } ~~ 1o -> { A } ~<_ 2o ) |
| 9 |
2 8
|
syl |
|- ( A e. C -> { A } ~<_ 2o ) |
| 10 |
1 9
|
eqbrtrrid |
|- ( A e. C -> { A , A } ~<_ 2o ) |
| 11 |
|
preq2 |
|- ( B = A -> { A , B } = { A , A } ) |
| 12 |
11
|
breq1d |
|- ( B = A -> ( { A , B } ~<_ 2o <-> { A , A } ~<_ 2o ) ) |
| 13 |
10 12
|
imbitrrid |
|- ( B = A -> ( A e. C -> { A , B } ~<_ 2o ) ) |
| 14 |
13
|
eqcoms |
|- ( A = B -> ( A e. C -> { A , B } ~<_ 2o ) ) |
| 15 |
14
|
adantrd |
|- ( A = B -> ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) ) |
| 16 |
|
pr2ne |
|- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) |
| 17 |
16
|
biimprd |
|- ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) ) |
| 18 |
|
endom |
|- ( { A , B } ~~ 2o -> { A , B } ~<_ 2o ) |
| 19 |
17 18
|
syl6com |
|- ( A =/= B -> ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) ) |
| 20 |
15 19
|
pm2.61ine |
|- ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) |