| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsn2 |
⊢ { 𝐴 } = { 𝐴 , 𝐴 } |
| 2 |
|
ensn1g |
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 } ≈ 1o ) |
| 3 |
|
endom |
⊢ ( { 𝐴 } ≈ 1o → { 𝐴 } ≼ 1o ) |
| 4 |
|
1sdom2 |
⊢ 1o ≺ 2o |
| 5 |
|
domsdomtr |
⊢ ( ( { 𝐴 } ≼ 1o ∧ 1o ≺ 2o ) → { 𝐴 } ≺ 2o ) |
| 6 |
|
sdomdom |
⊢ ( { 𝐴 } ≺ 2o → { 𝐴 } ≼ 2o ) |
| 7 |
5 6
|
syl |
⊢ ( ( { 𝐴 } ≼ 1o ∧ 1o ≺ 2o ) → { 𝐴 } ≼ 2o ) |
| 8 |
3 4 7
|
sylancl |
⊢ ( { 𝐴 } ≈ 1o → { 𝐴 } ≼ 2o ) |
| 9 |
2 8
|
syl |
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 } ≼ 2o ) |
| 10 |
1 9
|
eqbrtrrid |
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐴 } ≼ 2o ) |
| 11 |
|
preq2 |
⊢ ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } ) |
| 12 |
11
|
breq1d |
⊢ ( 𝐵 = 𝐴 → ( { 𝐴 , 𝐵 } ≼ 2o ↔ { 𝐴 , 𝐴 } ≼ 2o ) ) |
| 13 |
10 12
|
imbitrrid |
⊢ ( 𝐵 = 𝐴 → ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 14 |
13
|
eqcoms |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 15 |
14
|
adantrd |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 16 |
|
pr2ne |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o ↔ 𝐴 ≠ 𝐵 ) ) |
| 17 |
16
|
biimprd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) ) |
| 18 |
|
endom |
⊢ ( { 𝐴 , 𝐵 } ≈ 2o → { 𝐴 , 𝐵 } ≼ 2o ) |
| 19 |
17 18
|
syl6com |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) ) |
| 20 |
15 19
|
pm2.61ine |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) |