| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2onn |
⊢ 2o ∈ ω |
| 2 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
| 3 |
1 2
|
ax-mp |
⊢ 2o ∈ Fin |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ≈ 2o ) |
| 5 |
|
enfii |
⊢ ( ( 2o ∈ Fin ∧ 𝐶 ≈ 2o ) → 𝐶 ∈ Fin ) |
| 6 |
3 4 5
|
sylancr |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ∈ Fin ) |
| 7 |
|
simpl2 |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐶 ) |
| 8 |
|
simpl3 |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐶 ) |
| 9 |
7 8
|
prssd |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 10 |
|
enpr2 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 11 |
10
|
3expa |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 12 |
11
|
3adantl1 |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 13 |
4
|
ensymd |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 2o ≈ 𝐶 ) |
| 14 |
|
entr |
⊢ ( ( { 𝐴 , 𝐵 } ≈ 2o ∧ 2o ≈ 𝐶 ) → { 𝐴 , 𝐵 } ≈ 𝐶 ) |
| 15 |
12 13 14
|
syl2anc |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 𝐶 ) |
| 16 |
|
fisseneq |
⊢ ( ( 𝐶 ∈ Fin ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ∧ { 𝐴 , 𝐵 } ≈ 𝐶 ) → { 𝐴 , 𝐵 } = 𝐶 ) |
| 17 |
6 9 15 16
|
syl3anc |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐶 = { 𝐴 , 𝐵 } ) |
| 19 |
18
|
ex |
⊢ ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ≠ 𝐵 → 𝐶 = { 𝐴 , 𝐵 } ) ) |