| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precoffunc.r |
|- R = ( D FuncCat E ) |
| 2 |
|
precoffunc.b |
|- B = ( D Func E ) |
| 3 |
|
precoffunc.n |
|- N = ( D Nat E ) |
| 4 |
|
precoffunc.f |
|- ( ph -> F ( C Func D ) G ) |
| 5 |
|
precoffunc.e |
|- ( ph -> E e. Cat ) |
| 6 |
|
precoffunc.k |
|- ( ph -> K = ( g e. B |-> ( g o.func <. F , G >. ) ) ) |
| 7 |
|
precoffunc.l |
|- ( ph -> L = ( g e. B , h e. B |-> ( a e. ( g N h ) |-> ( a o. F ) ) ) ) |
| 8 |
|
precoffunc.s |
|- S = ( C FuncCat E ) |
| 9 |
|
eqid |
|- ( C FuncCat D ) = ( C FuncCat D ) |
| 10 |
|
eqidd |
|- ( ph -> ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) = ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) |
| 11 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
| 12 |
4 11
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` <. F , G >. ) = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` <. F , G >. ) ) |
| 14 |
1 2 3 4 5 6 7 9 10 13
|
precofval3 |
|- ( ph -> <. K , L >. = ( ( 1st ` ( <. ( C FuncCat D ) , R >. curryF ( ( <. C , D >. o.F E ) o.func ( ( C FuncCat D ) swapF R ) ) ) ) ` <. F , G >. ) ) |
| 15 |
9 1 10 12 5 14 8
|
precofcl |
|- ( ph -> <. K , L >. e. ( R Func S ) ) |
| 16 |
|
df-br |
|- ( K ( R Func S ) L <-> <. K , L >. e. ( R Func S ) ) |
| 17 |
15 16
|
sylibr |
|- ( ph -> K ( R Func S ) L ) |