| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precofvallem.a |
|- A = ( Base ` C ) |
| 2 |
|
precofvallem.b |
|- B = ( Base ` E ) |
| 3 |
|
precofvallem.1 |
|- .1. = ( Id ` D ) |
| 4 |
|
precofvallem.i |
|- I = ( Id ` E ) |
| 5 |
|
precofvallem.f |
|- ( ph -> F ( C Func D ) G ) |
| 6 |
|
precofvallem.k |
|- ( ph -> K ( D Func E ) L ) |
| 7 |
|
precofvallem.x |
|- ( ph -> X e. A ) |
| 8 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 9 |
1 8 5
|
funcf1 |
|- ( ph -> F : A --> ( Base ` D ) ) |
| 10 |
9 7
|
fvco3d |
|- ( ph -> ( ( .1. o. F ) ` X ) = ( .1. ` ( F ` X ) ) ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( ( ( F ` X ) L ( F ` X ) ) ` ( .1. ` ( F ` X ) ) ) ) |
| 12 |
9 7
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
| 13 |
8 3 4 6 12
|
funcid |
|- ( ph -> ( ( ( F ` X ) L ( F ` X ) ) ` ( .1. ` ( F ` X ) ) ) = ( I ` ( K ` ( F ` X ) ) ) ) |
| 14 |
11 13
|
eqtrd |
|- ( ph -> ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( I ` ( K ` ( F ` X ) ) ) ) |
| 15 |
8 2 6
|
funcf1 |
|- ( ph -> K : ( Base ` D ) --> B ) |
| 16 |
15 12
|
ffvelcdmd |
|- ( ph -> ( K ` ( F ` X ) ) e. B ) |
| 17 |
14 16
|
jca |
|- ( ph -> ( ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( I ` ( K ` ( F ` X ) ) ) /\ ( K ` ( F ` X ) ) e. B ) ) |