Metamath Proof Explorer


Theorem precofvallem

Description: Lemma for precofval to enable catlid or catrid . (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses precofvallem.a
|- A = ( Base ` C )
precofvallem.b
|- B = ( Base ` E )
precofvallem.1
|- .1. = ( Id ` D )
precofvallem.i
|- I = ( Id ` E )
precofvallem.f
|- ( ph -> F ( C Func D ) G )
precofvallem.k
|- ( ph -> K ( D Func E ) L )
precofvallem.x
|- ( ph -> X e. A )
Assertion precofvallem
|- ( ph -> ( ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( I ` ( K ` ( F ` X ) ) ) /\ ( K ` ( F ` X ) ) e. B ) )

Proof

Step Hyp Ref Expression
1 precofvallem.a
 |-  A = ( Base ` C )
2 precofvallem.b
 |-  B = ( Base ` E )
3 precofvallem.1
 |-  .1. = ( Id ` D )
4 precofvallem.i
 |-  I = ( Id ` E )
5 precofvallem.f
 |-  ( ph -> F ( C Func D ) G )
6 precofvallem.k
 |-  ( ph -> K ( D Func E ) L )
7 precofvallem.x
 |-  ( ph -> X e. A )
8 eqid
 |-  ( Base ` D ) = ( Base ` D )
9 1 8 5 funcf1
 |-  ( ph -> F : A --> ( Base ` D ) )
10 9 7 fvco3d
 |-  ( ph -> ( ( .1. o. F ) ` X ) = ( .1. ` ( F ` X ) ) )
11 10 fveq2d
 |-  ( ph -> ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( ( ( F ` X ) L ( F ` X ) ) ` ( .1. ` ( F ` X ) ) ) )
12 9 7 ffvelcdmd
 |-  ( ph -> ( F ` X ) e. ( Base ` D ) )
13 8 3 4 6 12 funcid
 |-  ( ph -> ( ( ( F ` X ) L ( F ` X ) ) ` ( .1. ` ( F ` X ) ) ) = ( I ` ( K ` ( F ` X ) ) ) )
14 11 13 eqtrd
 |-  ( ph -> ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( I ` ( K ` ( F ` X ) ) ) )
15 8 2 6 funcf1
 |-  ( ph -> K : ( Base ` D ) --> B )
16 15 12 ffvelcdmd
 |-  ( ph -> ( K ` ( F ` X ) ) e. B )
17 14 16 jca
 |-  ( ph -> ( ( ( ( F ` X ) L ( F ` X ) ) ` ( ( .1. o. F ) ` X ) ) = ( I ` ( K ` ( F ` X ) ) ) /\ ( K ` ( F ` X ) ) e. B ) )