| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precofvallem.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 2 |
|
precofvallem.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 3 |
|
precofvallem.1 |
⊢ 1 = ( Id ‘ 𝐷 ) |
| 4 |
|
precofvallem.i |
⊢ 𝐼 = ( Id ‘ 𝐸 ) |
| 5 |
|
precofvallem.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 6 |
|
precofvallem.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 7 |
|
precofvallem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 9 |
1 8 5
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ) |
| 10 |
9 7
|
fvco3d |
⊢ ( 𝜑 → ( ( 1 ∘ 𝐹 ) ‘ 𝑋 ) = ( 1 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑋 ) ) ‘ ( ( 1 ∘ 𝐹 ) ‘ 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑋 ) ) ‘ ( 1 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 12 |
9 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 13 |
8 3 4 6 12
|
funcid |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑋 ) ) ‘ ( 1 ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 14 |
11 13
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑋 ) ) ‘ ( ( 1 ∘ 𝐹 ) ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 15 |
8 2 6
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐷 ) ⟶ 𝐵 ) |
| 16 |
15 12
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 17 |
14 16
|
jca |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑋 ) ) ‘ ( ( 1 ∘ 𝐹 ) ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∧ ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐵 ) ) |