Metamath Proof Explorer


Theorem precofvallem

Description: Lemma for precofval to enable catlid or catrid . (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses precofvallem.a 𝐴 = ( Base ‘ 𝐶 )
precofvallem.b 𝐵 = ( Base ‘ 𝐸 )
precofvallem.1 1 = ( Id ‘ 𝐷 )
precofvallem.i 𝐼 = ( Id ‘ 𝐸 )
precofvallem.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
precofvallem.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
precofvallem.x ( 𝜑𝑋𝐴 )
Assertion precofvallem ( 𝜑 → ( ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑋 ) ) ‘ ( ( 1𝐹 ) ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) ∧ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 precofvallem.a 𝐴 = ( Base ‘ 𝐶 )
2 precofvallem.b 𝐵 = ( Base ‘ 𝐸 )
3 precofvallem.1 1 = ( Id ‘ 𝐷 )
4 precofvallem.i 𝐼 = ( Id ‘ 𝐸 )
5 precofvallem.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
6 precofvallem.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
7 precofvallem.x ( 𝜑𝑋𝐴 )
8 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
9 1 8 5 funcf1 ( 𝜑𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) )
10 9 7 fvco3d ( 𝜑 → ( ( 1𝐹 ) ‘ 𝑋 ) = ( 1 ‘ ( 𝐹𝑋 ) ) )
11 10 fveq2d ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑋 ) ) ‘ ( ( 1𝐹 ) ‘ 𝑋 ) ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑋 ) ) ‘ ( 1 ‘ ( 𝐹𝑋 ) ) ) )
12 9 7 ffvelcdmd ( 𝜑 → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐷 ) )
13 8 3 4 6 12 funcid ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑋 ) ) ‘ ( 1 ‘ ( 𝐹𝑋 ) ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) )
14 11 13 eqtrd ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑋 ) ) ‘ ( ( 1𝐹 ) ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) )
15 8 2 6 funcf1 ( 𝜑𝐾 : ( Base ‘ 𝐷 ) ⟶ 𝐵 )
16 15 12 ffvelcdmd ( 𝜑 → ( 𝐾 ‘ ( 𝐹𝑋 ) ) ∈ 𝐵 )
17 14 16 jca ( 𝜑 → ( ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑋 ) ) ‘ ( ( 1𝐹 ) ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ) ∧ ( 𝐾 ‘ ( 𝐹𝑋 ) ) ∈ 𝐵 ) )