| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precofval.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
precofval.r |
|- R = ( D FuncCat E ) |
| 3 |
|
precofval.o |
|- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) |
| 4 |
|
precofval.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
precofval.e |
|- ( ph -> E e. Cat ) |
| 6 |
|
precofval.k |
|- ( ph -> K = ( ( 1st ` .o. ) ` F ) ) |
| 7 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 8 |
|
relfunc |
|- Rel ( C Func D ) |
| 9 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 10 |
8 4 9
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 11 |
10
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 12 |
10
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 13 |
1 11 12
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 14 |
2 12 5
|
fuccat |
|- ( ph -> R e. Cat ) |
| 15 |
2 1
|
oveq12i |
|- ( R Xc. Q ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
| 16 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 17 |
15 16 11 12 5
|
fucofunca |
|- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func ( C FuncCat E ) ) ) |
| 18 |
2
|
fucbas |
|- ( D Func E ) = ( Base ` R ) |
| 19 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 20 |
2 19
|
fuchom |
|- ( D Nat E ) = ( Hom ` R ) |
| 21 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
| 22 |
3 7 13 14 17 4 6 18 20 21
|
tposcurf1 |
|- ( ph -> K = <. ( g e. ( D Func E ) |-> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) ) >. ) |
| 23 |
|
eqidd |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( 1st ` ( <. C , D >. o.F E ) ) = ( 1st ` ( <. C , D >. o.F E ) ) ) |
| 24 |
4
|
adantr |
|- ( ( ph /\ g e. ( D Func E ) ) -> F e. ( C Func D ) ) |
| 25 |
|
simpr |
|- ( ( ph /\ g e. ( D Func E ) ) -> g e. ( D Func E ) ) |
| 26 |
23 24 25
|
fuco11b |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) = ( g o.func F ) ) |
| 27 |
26
|
mpteq2dva |
|- ( ph -> ( g e. ( D Func E ) |-> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) ) = ( g e. ( D Func E ) |-> ( g o.func F ) ) ) |
| 28 |
|
eqidd |
|- ( ( ph /\ a e. ( g ( D Nat E ) h ) ) -> ( 2nd ` ( <. C , D >. o.F E ) ) = ( 2nd ` ( <. C , D >. o.F E ) ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ a e. ( g ( D Nat E ) h ) ) -> a e. ( g ( D Nat E ) h ) ) |
| 30 |
4
|
adantr |
|- ( ( ph /\ a e. ( g ( D Nat E ) h ) ) -> F e. ( C Func D ) ) |
| 31 |
28 21 1 29 30
|
fucorid |
|- ( ( ph /\ a e. ( g ( D Nat E ) h ) ) -> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) = ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) |
| 32 |
31
|
mpteq2dva |
|- ( ph -> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) = ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) |
| 33 |
32
|
mpoeq3dv |
|- ( ph -> ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) ) = ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) ) |
| 34 |
27 33
|
opeq12d |
|- ( ph -> <. ( g e. ( D Func E ) |-> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) ) >. = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) >. ) |
| 35 |
22 34
|
eqtrd |
|- ( ph -> K = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) >. ) |