| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precofval.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
precofval.r |
|- R = ( D FuncCat E ) |
| 3 |
|
precofval.o |
|- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) |
| 4 |
|
precofval.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
precofval.e |
|- ( ph -> E e. Cat ) |
| 6 |
|
precofval.k |
|- ( ph -> K = ( ( 1st ` .o. ) ` F ) ) |
| 7 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 8 |
|
relfunc |
|- Rel ( C Func D ) |
| 9 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 10 |
8 4 9
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 11 |
10
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 12 |
10
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 13 |
1 11 12
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 14 |
2 12 5
|
fuccat |
|- ( ph -> R e. Cat ) |
| 15 |
2 1
|
oveq12i |
|- ( R Xc. Q ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
| 16 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 17 |
15 16 11 12 5
|
fucofunca |
|- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func ( C FuncCat E ) ) ) |
| 18 |
2
|
fucbas |
|- ( D Func E ) = ( Base ` R ) |
| 19 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 20 |
2 19
|
fuchom |
|- ( D Nat E ) = ( Hom ` R ) |
| 21 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
| 22 |
3 7 13 14 17 4 6 18 20 21
|
tposcurf1 |
|- ( ph -> K = <. ( g e. ( D Func E ) |-> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) ) >. ) |
| 23 |
|
df-ov |
|- ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) = ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. g , F >. ) |
| 24 |
|
eqidd |
|- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) |
| 25 |
11 12 5 24
|
fucoelvv |
|- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) |
| 26 |
|
1st2nd2 |
|- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 29 |
10
|
adantr |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 30 |
|
relfunc |
|- Rel ( D Func E ) |
| 31 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ g e. ( D Func E ) ) -> ( 1st ` g ) ( D Func E ) ( 2nd ` g ) ) |
| 32 |
30 31
|
mpan |
|- ( g e. ( D Func E ) -> ( 1st ` g ) ( D Func E ) ( 2nd ` g ) ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( 1st ` g ) ( D Func E ) ( 2nd ` g ) ) |
| 34 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ g e. ( D Func E ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 35 |
30 34
|
mpan |
|- ( g e. ( D Func E ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ g e. ( D Func E ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 37 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 38 |
8 4 37
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ g e. ( D Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 40 |
36 39
|
opeq12d |
|- ( ( ph /\ g e. ( D Func E ) ) -> <. g , F >. = <. <. ( 1st ` g ) , ( 2nd ` g ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. ) |
| 41 |
28 29 33 40
|
fuco11 |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. g , F >. ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 42 |
36 39
|
oveq12d |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( g o.func F ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 43 |
41 42
|
eqtr4d |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. g , F >. ) = ( g o.func F ) ) |
| 44 |
23 43
|
eqtrid |
|- ( ( ph /\ g e. ( D Func E ) ) -> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) = ( g o.func F ) ) |
| 45 |
44
|
mpteq2dva |
|- ( ph -> ( g e. ( D Func E ) |-> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) ) = ( g e. ( D Func E ) |-> ( g o.func F ) ) ) |
| 46 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 47 |
1 21 46 4
|
fucid |
|- ( ph -> ( ( Id ` Q ) ` F ) = ( ( Id ` D ) o. ( 1st ` F ) ) ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( ( Id ` Q ) ` F ) = ( ( Id ` D ) o. ( 1st ` F ) ) ) |
| 49 |
48
|
oveq2d |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) = ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` D ) o. ( 1st ` F ) ) ) ) |
| 50 |
27
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) |
| 51 |
|
eqidd |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> <. g , F >. = <. g , F >. ) |
| 52 |
|
eqidd |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> <. h , F >. = <. h , F >. ) |
| 53 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
| 54 |
1 53 46 4
|
fucidcl |
|- ( ph -> ( ( Id ` D ) o. ( 1st ` F ) ) e. ( F ( C Nat D ) F ) ) |
| 55 |
54
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( ( Id ` D ) o. ( 1st ` F ) ) e. ( F ( C Nat D ) F ) ) |
| 56 |
|
simpr |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> a e. ( g ( D Nat E ) h ) ) |
| 57 |
50 51 52 55 56
|
fuco22a |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` D ) o. ( 1st ` F ) ) ) = ( x e. ( Base ` C ) |-> ( ( a ` ( ( 1st ` F ) ` x ) ) ( <. ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) >. ( comp ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` g ) ( ( 1st ` F ) ` x ) ) ` ( ( ( Id ` D ) o. ( 1st ` F ) ) ` x ) ) ) ) ) |
| 58 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 59 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 60 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
| 61 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 62 |
32
|
adantr |
|- ( ( g e. ( D Func E ) /\ h e. ( D Func E ) ) -> ( 1st ` g ) ( D Func E ) ( 2nd ` g ) ) |
| 63 |
62
|
ad3antlr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( 1st ` g ) ( D Func E ) ( 2nd ` g ) ) |
| 64 |
|
simpr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 65 |
58 59 46 60 61 63 64
|
precofvallem |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` g ) ( ( 1st ` F ) ` x ) ) ` ( ( ( Id ` D ) o. ( 1st ` F ) ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) ) /\ ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) e. ( Base ` E ) ) ) |
| 66 |
65
|
simpld |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` g ) ( ( 1st ` F ) ` x ) ) ` ( ( ( Id ` D ) o. ( 1st ` F ) ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 67 |
66
|
oveq2d |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( a ` ( ( 1st ` F ) ` x ) ) ( <. ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) >. ( comp ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` g ) ( ( 1st ` F ) ` x ) ) ` ( ( ( Id ` D ) o. ( 1st ` F ) ) ` x ) ) ) = ( ( a ` ( ( 1st ` F ) ` x ) ) ( <. ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) >. ( comp ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ( ( Id ` E ) ` ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) ) ) ) |
| 68 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 69 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 70 |
65
|
simprd |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) e. ( Base ` E ) ) |
| 71 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 72 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 73 |
|
simpllr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) |
| 74 |
73
|
simprd |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> h e. ( D Func E ) ) |
| 75 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ h e. ( D Func E ) ) -> ( 1st ` h ) ( D Func E ) ( 2nd ` h ) ) |
| 76 |
30 74 75
|
sylancr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( 1st ` h ) ( D Func E ) ( 2nd ` h ) ) |
| 77 |
72 59 76
|
funcf1 |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( 1st ` h ) : ( Base ` D ) --> ( Base ` E ) ) |
| 78 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 79 |
58 72 78
|
funcf1 |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 80 |
79
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 81 |
77 80
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) e. ( Base ` E ) ) |
| 82 |
56
|
adantr |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> a e. ( g ( D Nat E ) h ) ) |
| 83 |
19 82
|
nat1st2nd |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> a e. ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( D Nat E ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
| 84 |
19 83 72 68 80
|
natcl |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( a ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 85 |
59 68 60 69 70 71 81 84
|
catrid |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( a ` ( ( 1st ` F ) ` x ) ) ( <. ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) >. ( comp ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ( ( Id ` E ) ` ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) ) ) = ( a ` ( ( 1st ` F ) ` x ) ) ) |
| 86 |
67 85
|
eqtrd |
|- ( ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) /\ x e. ( Base ` C ) ) -> ( ( a ` ( ( 1st ` F ) ` x ) ) ( <. ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) >. ( comp ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` g ) ( ( 1st ` F ) ` x ) ) ` ( ( ( Id ` D ) o. ( 1st ` F ) ) ` x ) ) ) = ( a ` ( ( 1st ` F ) ` x ) ) ) |
| 87 |
86
|
mpteq2dva |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( x e. ( Base ` C ) |-> ( ( a ` ( ( 1st ` F ) ` x ) ) ( <. ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` g ) ` ( ( 1st ` F ) ` x ) ) >. ( comp ` E ) ( ( 1st ` h ) ` ( ( 1st ` F ) ` x ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` g ) ( ( 1st ` F ) ` x ) ) ` ( ( ( Id ` D ) o. ( 1st ` F ) ) ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) |
| 88 |
49 57 87
|
3eqtrd |
|- ( ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) /\ a e. ( g ( D Nat E ) h ) ) -> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) = ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) |
| 89 |
88
|
mpteq2dva |
|- ( ( ph /\ ( g e. ( D Func E ) /\ h e. ( D Func E ) ) ) -> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) = ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) |
| 90 |
89
|
3impb |
|- ( ( ph /\ g e. ( D Func E ) /\ h e. ( D Func E ) ) -> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) = ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) |
| 91 |
90
|
mpoeq3dva |
|- ( ph -> ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) ) = ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) ) |
| 92 |
45 91
|
opeq12d |
|- ( ph -> <. ( g e. ( D Func E ) |-> ( g ( 1st ` ( <. C , D >. o.F E ) ) F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a ( <. g , F >. ( 2nd ` ( <. C , D >. o.F E ) ) <. h , F >. ) ( ( Id ` Q ) ` F ) ) ) ) >. = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) >. ) |
| 93 |
22 92
|
eqtrd |
|- ( ph -> K = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) >. ) |