Metamath Proof Explorer


Theorem precofvalALT

Description: Alternate proof of precofval . (Contributed by Zhi Wang, 11-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses precofval.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
precofval.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
precofval.o ( 𝜑 = ( ⟨ 𝑄 , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( 𝑄 swapF 𝑅 ) ) ) )
precofval.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
precofval.e ( 𝜑𝐸 ∈ Cat )
precofval.k ( 𝜑𝐾 = ( ( 1st ) ‘ 𝐹 ) )
Assertion precofvalALT ( 𝜑𝐾 = ⟨ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔func 𝐹 ) ) , ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 precofval.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
2 precofval.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
3 precofval.o ( 𝜑 = ( ⟨ 𝑄 , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( 𝑄 swapF 𝑅 ) ) ) )
4 precofval.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 precofval.e ( 𝜑𝐸 ∈ Cat )
6 precofval.k ( 𝜑𝐾 = ( ( 1st ) ‘ 𝐹 ) )
7 1 fucbas ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 )
8 relfunc Rel ( 𝐶 Func 𝐷 )
9 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
10 8 4 9 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
11 10 funcrcl2 ( 𝜑𝐶 ∈ Cat )
12 10 funcrcl3 ( 𝜑𝐷 ∈ Cat )
13 1 11 12 fuccat ( 𝜑𝑄 ∈ Cat )
14 2 12 5 fuccat ( 𝜑𝑅 ∈ Cat )
15 2 1 oveq12i ( 𝑅 ×c 𝑄 ) = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
16 eqid ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 )
17 15 16 11 12 5 fucofunca ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( ( 𝑅 ×c 𝑄 ) Func ( 𝐶 FuncCat 𝐸 ) ) )
18 2 fucbas ( 𝐷 Func 𝐸 ) = ( Base ‘ 𝑅 )
19 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
20 2 19 fuchom ( 𝐷 Nat 𝐸 ) = ( Hom ‘ 𝑅 )
21 eqid ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 )
22 3 7 13 14 17 4 6 18 20 21 tposcurf1 ( 𝜑𝐾 = ⟨ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔 ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) 𝐹 ) ) , ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) ) ) ⟩ )
23 df-ov ( 𝑔 ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) 𝐹 ) = ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ‘ ⟨ 𝑔 , 𝐹 ⟩ )
24 eqidd ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) )
25 11 12 5 24 fucoelvv ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) )
26 1st2nd2 ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
27 25 26 syl ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
28 27 adantr ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
29 10 adantr ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
30 relfunc Rel ( 𝐷 Func 𝐸 )
31 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝑔 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑔 ) )
32 30 31 mpan ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) → ( 1st𝑔 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑔 ) )
33 32 adantl ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝑔 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑔 ) )
34 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
35 30 34 mpan ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
36 35 adantl ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
37 1st2nd ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
38 8 4 37 sylancr ( 𝜑𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
39 38 adantr ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
40 36 39 opeq12d ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ⟨ 𝑔 , 𝐹 ⟩ = ⟨ ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ , ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ⟩ )
41 28 29 33 40 fuco11 ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ‘ ⟨ 𝑔 , 𝐹 ⟩ ) = ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
42 36 39 oveq12d ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( 𝑔func 𝐹 ) = ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
43 41 42 eqtr4d ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ‘ ⟨ 𝑔 , 𝐹 ⟩ ) = ( 𝑔func 𝐹 ) )
44 23 43 eqtrid ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ) → ( 𝑔 ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) 𝐹 ) = ( 𝑔func 𝐹 ) )
45 44 mpteq2dva ( 𝜑 → ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔 ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) 𝐹 ) ) = ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔func 𝐹 ) ) )
46 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
47 1 21 46 4 fucid ( 𝜑 → ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) )
48 47 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) )
49 48 oveq2d ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) = ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ) )
50 27 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
51 eqidd ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ⟨ 𝑔 , 𝐹 ⟩ = ⟨ 𝑔 , 𝐹 ⟩ )
52 eqidd ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ⟨ , 𝐹 ⟩ = ⟨ , 𝐹 ⟩ )
53 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
54 1 53 46 4 fucidcl ( 𝜑 → ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ∈ ( 𝐹 ( 𝐶 Nat 𝐷 ) 𝐹 ) )
55 54 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ∈ ( 𝐹 ( 𝐶 Nat 𝐷 ) 𝐹 ) )
56 simpr ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) )
57 50 51 52 55 56 fuco22a ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) , ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ‘ 𝑥 ) ) ) ) )
58 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
59 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
60 eqid ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 )
61 10 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
62 32 adantr ( ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝑔 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑔 ) )
63 62 ad3antlr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝑔 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑔 ) )
64 simpr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
65 58 59 46 60 61 63 64 precofvallem ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) ) )
66 65 simpld ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
67 66 oveq2d ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) , ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ‘ 𝑥 ) ) ) = ( ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) , ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) )
68 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
69 5 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat )
70 65 simprd ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) )
71 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
72 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
73 simpllr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) )
74 73 simprd ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∈ ( 𝐷 Func 𝐸 ) )
75 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ) ( 𝐷 Func 𝐸 ) ( 2nd ) )
76 30 74 75 sylancr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ) ( 𝐷 Func 𝐸 ) ( 2nd ) )
77 72 59 76 funcf1 ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
78 10 ad2antrr ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
79 58 72 78 funcf1 ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
80 79 ffvelcdmda ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
81 77 80 ffvelcdmd ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) )
82 56 adantr ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) )
83 19 82 nat1st2nd ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
84 19 83 72 68 80 natcl ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∈ ( ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
85 59 68 60 69 70 71 81 84 catrid ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) , ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) = ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
86 67 85 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) , ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ‘ 𝑥 ) ) ) = ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
87 86 mpteq2dva ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) , ( ( 1st𝑔 ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝑔 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝐹 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
88 49 57 87 3eqtrd ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) ∧ 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ) → ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
89 88 mpteq2dva ( ( 𝜑 ∧ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) ) → ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) ) = ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) )
90 89 3impb ( ( 𝜑𝑔 ∈ ( 𝐷 Func 𝐸 ) ∧ ∈ ( 𝐷 Func 𝐸 ) ) → ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) ) = ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) )
91 90 mpoeq3dva ( 𝜑 → ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) ) ) = ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) ) )
92 45 91 opeq12d ( 𝜑 → ⟨ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔 ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) 𝐹 ) ) , ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑎 ( ⟨ 𝑔 , 𝐹 ⟩ ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟨ , 𝐹 ⟩ ) ( ( Id ‘ 𝑄 ) ‘ 𝐹 ) ) ) ) ⟩ = ⟨ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔func 𝐹 ) ) , ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) ) ⟩ )
93 22 92 eqtrd ( 𝜑𝐾 = ⟨ ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑔func 𝐹 ) ) , ( 𝑔 ∈ ( 𝐷 Func 𝐸 ) , ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑔 ( 𝐷 Nat 𝐸 ) ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) ) ⟩ )