| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precofval.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
precofval.r |
|- R = ( D FuncCat E ) |
| 3 |
|
precofval.o |
|- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) |
| 4 |
|
precofval.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
precofval.e |
|- ( ph -> E e. Cat ) |
| 6 |
|
precofval.k |
|- ( ph -> K = ( ( 1st ` .o. ) ` F ) ) |
| 7 |
1 2 3 4 5 6
|
precofval |
|- ( ph -> K = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) >. ) |
| 8 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 9 |
|
id |
|- ( a e. ( g ( D Nat E ) h ) -> a e. ( g ( D Nat E ) h ) ) |
| 10 |
8 9
|
nat1st2nd |
|- ( a e. ( g ( D Nat E ) h ) -> a e. ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( D Nat E ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
| 11 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 12 |
8 10 11
|
natfn |
|- ( a e. ( g ( D Nat E ) h ) -> a Fn ( Base ` D ) ) |
| 13 |
|
dffn2 |
|- ( a Fn ( Base ` D ) <-> a : ( Base ` D ) --> _V ) |
| 14 |
12 13
|
sylib |
|- ( a e. ( g ( D Nat E ) h ) -> a : ( Base ` D ) --> _V ) |
| 15 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 16 |
|
relfunc |
|- Rel ( C Func D ) |
| 17 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 18 |
16 4 17
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 19 |
15 11 18
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 20 |
|
fcompt |
|- ( ( a : ( Base ` D ) --> _V /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( a o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) |
| 21 |
14 19 20
|
syl2anr |
|- ( ( ph /\ a e. ( g ( D Nat E ) h ) ) -> ( a o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) |
| 22 |
21
|
mpteq2dva |
|- ( ph -> ( a e. ( g ( D Nat E ) h ) |-> ( a o. ( 1st ` F ) ) ) = ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) |
| 23 |
22
|
mpoeq3dv |
|- ( ph -> ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a o. ( 1st ` F ) ) ) ) = ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) ) |
| 24 |
23
|
opeq2d |
|- ( ph -> <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a o. ( 1st ` F ) ) ) ) >. = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( x e. ( Base ` C ) |-> ( a ` ( ( 1st ` F ) ` x ) ) ) ) ) >. ) |
| 25 |
7 24
|
eqtr4d |
|- ( ph -> K = <. ( g e. ( D Func E ) |-> ( g o.func F ) ) , ( g e. ( D Func E ) , h e. ( D Func E ) |-> ( a e. ( g ( D Nat E ) h ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |