Metamath Proof Explorer


Theorem preqr1

Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995)

Ref Expression
Hypotheses preqr1.a
|- A e. _V
preqr1.b
|- B e. _V
Assertion preqr1
|- ( { A , C } = { B , C } -> A = B )

Proof

Step Hyp Ref Expression
1 preqr1.a
 |-  A e. _V
2 preqr1.b
 |-  B e. _V
3 id
 |-  ( A e. _V -> A e. _V )
4 2 a1i
 |-  ( A e. _V -> B e. _V )
5 3 4 preq1b
 |-  ( A e. _V -> ( { A , C } = { B , C } <-> A = B ) )
6 1 5 ax-mp
 |-  ( { A , C } = { B , C } <-> A = B )
7 6 biimpi
 |-  ( { A , C } = { B , C } -> A = B )