Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preqr1.a | |- A e. _V |
|
preqr1.b | |- B e. _V |
||
Assertion | preqr1 | |- ( { A , C } = { B , C } -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.a | |- A e. _V |
|
2 | preqr1.b | |- B e. _V |
|
3 | id | |- ( A e. _V -> A e. _V ) |
|
4 | 2 | a1i | |- ( A e. _V -> B e. _V ) |
5 | 3 4 | preq1b | |- ( A e. _V -> ( { A , C } = { B , C } <-> A = B ) ) |
6 | 1 5 | ax-mp | |- ( { A , C } = { B , C } <-> A = B ) |
7 | 6 | biimpi | |- ( { A , C } = { B , C } -> A = B ) |